-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunet_model.py
executable file
·161 lines (144 loc) · 5.61 KB
/
unet_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# u-net model with up-convolution or up-sampling and weighted binary-crossentropy as loss func
from keras.models import Model
from keras.layers import (
Input,
Conv2D,
MaxPooling2D,
UpSampling2D,
concatenate,
Conv2DTranspose,
BatchNormalization,
Dropout,
)
from keras.optimizers import Adam
from keras.utils import plot_model
from keras import backend as K
def unet_model(
n_classes=5,
im_sz=160,
n_channels=8,
n_filters_start=32,
growth_factor=2,
upconv=True,
class_weights=[0.2, 0.3, 0.1, 0.1, 0.3],
):
droprate = 0.25
n_filters = n_filters_start
inputs = Input((im_sz, im_sz, n_channels))
# inputs = BatchNormalization()(inputs)
conv1 = Conv2D(n_filters, (3, 3), activation="relu", padding="same")(inputs)
conv1 = Conv2D(n_filters, (3, 3), activation="relu", padding="same")(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
# pool1 = Dropout(droprate)(pool1)
n_filters *= growth_factor
pool1 = BatchNormalization()(pool1)
conv2 = Conv2D(n_filters, (3, 3), activation="relu", padding="same")(pool1)
conv2 = Conv2D(n_filters, (3, 3), activation="relu", padding="same")(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
pool2 = Dropout(droprate)(pool2)
n_filters *= growth_factor
pool2 = BatchNormalization()(pool2)
conv3 = Conv2D(n_filters, (3, 3), activation="relu", padding="same")(pool2)
conv3 = Conv2D(n_filters, (3, 3), activation="relu", padding="same")(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
pool3 = Dropout(droprate)(pool3)
n_filters *= growth_factor
pool3 = BatchNormalization()(pool3)
conv4_0 = Conv2D(n_filters, (3, 3), activation="relu", padding="same")(pool3)
conv4_0 = Conv2D(n_filters, (3, 3), activation="relu", padding="same")(conv4_0)
pool4_1 = MaxPooling2D(pool_size=(2, 2))(conv4_0)
pool4_1 = Dropout(droprate)(pool4_1)
n_filters *= growth_factor
pool4_1 = BatchNormalization()(pool4_1)
conv4_1 = Conv2D(n_filters, (3, 3), activation="relu", padding="same")(pool4_1)
conv4_1 = Conv2D(n_filters, (3, 3), activation="relu", padding="same")(conv4_1)
pool4_2 = MaxPooling2D(pool_size=(2, 2))(conv4_1)
pool4_2 = Dropout(droprate)(pool4_2)
n_filters *= growth_factor
conv5 = Conv2D(n_filters, (3, 3), activation="relu", padding="same")(pool4_2)
conv5 = Conv2D(n_filters, (3, 3), activation="relu", padding="same")(conv5)
n_filters //= growth_factor
if upconv:
up6_1 = concatenate(
[
Conv2DTranspose(n_filters, (2, 2), strides=(2, 2), padding="same")(
conv5
),
conv4_1,
]
)
else:
up6_1 = concatenate([UpSampling2D(size=(2, 2))(conv5), conv4_1])
up6_1 = BatchNormalization()(up6_1)
conv6_1 = Conv2D(n_filters, (3, 3), activation="relu", padding="same")(up6_1)
conv6_1 = Conv2D(n_filters, (3, 3), activation="relu", padding="same")(conv6_1)
conv6_1 = Dropout(droprate)(conv6_1)
n_filters //= growth_factor
if upconv:
up6_2 = concatenate(
[
Conv2DTranspose(n_filters, (2, 2), strides=(2, 2), padding="same")(
conv6_1
),
conv4_0,
]
)
else:
up6_2 = concatenate([UpSampling2D(size=(2, 2))(conv6_1), conv4_0])
up6_2 = BatchNormalization()(up6_2)
conv6_2 = Conv2D(n_filters, (3, 3), activation="relu", padding="same")(up6_2)
conv6_2 = Conv2D(n_filters, (3, 3), activation="relu", padding="same")(conv6_2)
conv6_2 = Dropout(droprate)(conv6_2)
n_filters //= growth_factor
if upconv:
up7 = concatenate(
[
Conv2DTranspose(n_filters, (2, 2), strides=(2, 2), padding="same")(
conv6_2
),
conv3,
]
)
else:
up7 = concatenate([UpSampling2D(size=(2, 2))(conv6_2), conv3])
up7 = BatchNormalization()(up7)
conv7 = Conv2D(n_filters, (3, 3), activation="relu", padding="same")(up7)
conv7 = Conv2D(n_filters, (3, 3), activation="relu", padding="same")(conv7)
conv7 = Dropout(droprate)(conv7)
n_filters //= growth_factor
if upconv:
up8 = concatenate(
[
Conv2DTranspose(n_filters, (2, 2), strides=(2, 2), padding="same")(
conv7
),
conv2,
]
)
else:
up8 = concatenate([UpSampling2D(size=(2, 2))(conv7), conv2])
up8 = BatchNormalization()(up8)
conv8 = Conv2D(n_filters, (3, 3), activation="relu", padding="same")(up8)
conv8 = Conv2D(n_filters, (3, 3), activation="relu", padding="same")(conv8)
conv8 = Dropout(droprate)(conv8)
n_filters //= growth_factor
if upconv:
up9 = concatenate(
[
Conv2DTranspose(n_filters, (2, 2), strides=(2, 2), padding="same")(
conv8
),
conv1,
]
)
else:
up9 = concatenate([UpSampling2D(size=(2, 2))(conv8), conv1])
conv9 = Conv2D(n_filters, (3, 3), activation="relu", padding="same")(up9)
conv9 = Conv2D(n_filters, (3, 3), activation="relu", padding="same")(conv9)
conv10 = Conv2D(n_classes, (1, 1), activation="sigmoid")(conv9)
model = Model(inputs=inputs, outputs=conv10)
def weighted_binary_crossentropy(y_true, y_pred):
class_loglosses = K.mean(K.binary_crossentropy(y_true, y_pred), axis=[0, 1, 2])
return K.sum(class_loglosses * K.constant(class_weights))
model.compile(optimizer=Adam(), loss=weighted_binary_crossentropy)
return model