-
Notifications
You must be signed in to change notification settings - Fork 26
/
Demo_TWSC_Sigma_RW_CC2016.m
88 lines (85 loc) · 3.3 KB
/
Demo_TWSC_Sigma_RW_CC2016.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
%-------------------------------------------------------------------------------------------------------------
% This is an implementation of the TWSC algorithm for real-world image denoising
%
% Author: Jun Xu, csjunxu@comp.polyu.edu.hk / nankaimathxujun@gmail.com
% The Hong Kong Polytechnic University
%
% Please refer to the following paper if you find this code helps:
%
% @article{TWSC_ECCV2018,
% author = {Jun Xu and Lei Zhang and David Zhang},
% title = {A Trilateral Weighted Sparse Coding Scheme for Real-World Image Denoising},
% journal = {ECCV},
% year = {2018}
% }
%
% Please see the file License.txt for the license governing this code.
%-------------------------------------------------------------------------------------------------------------
clear;
GT_Original_image_dir = 'cc/';
GT_fpath = fullfile(GT_Original_image_dir, '*mean.png');
TT_Original_image_dir = 'cc/';
TT_fpath = fullfile(TT_Original_image_dir, '*real.png');
% GT_Original_image_dir = 'C:\Users\csjunxu\Desktop\CVPR2018 Denoising\PolyU\';
% GT_fpath = fullfile(GT_Original_image_dir, '*mean.JPG');
% TT_Original_image_dir = 'C:\Users\csjunxu\Desktop\CVPR2018 Denoising\PolyU\';
% TT_fpath = fullfile(TT_Original_image_dir, '*real.JPG');
GT_im_dir = dir(GT_fpath);
TT_im_dir = dir(TT_fpath);
im_num = length(TT_im_dir);
method = 'TWSC';
dataset = 'cc';
write_MAT_dir = [dataset '_Results/'];
write_sRGB_dir = [write_MAT_dir method];
if ~isdir(write_sRGB_dir)
mkdir(write_sRGB_dir)
end
% Parameters
Par.ps = 6; % patch size
Par.step = 3; % the step of two neighbor patches
Par.win = 20; % size of window around the patch
Par.Outerloop = 7;
Par.Innerloop = 2;
Par.maxIter = 10;
Par.maxrho = 100;
Par.nlspini = 70;
Par.display = 1;
Par.delta = 0;
Par.nlspgap = 0;
Par.lambda1 = 0;
Par.lambda2 = 4.9;
Par.nlspini = 70;
% set Parameters
% record all the results in each iteration
Par.PSNR = zeros(Par.Outerloop, im_num, 'double');
Par.SSIM = zeros(Par.Outerloop, im_num, 'double');
for i = 1 : im_num
Par.nlsp = Par.nlspini; % number of non-local patches
Par.image = i;
Par.nim = im2double(imread(fullfile(TT_Original_image_dir, TT_im_dir(i).name) ));
Par.I = im2double(imread(fullfile(GT_Original_image_dir, GT_im_dir(i).name)));
S = regexp(TT_im_dir(i).name, '\.', 'split');
IMname = S{1};
[h,w,ch] = size(Par.nim);
% noise estimation
for c = 1:ch
Par.nSig(c) = NoiseEstimation(Par.nim(:, :, c)*255, Par.ps)/255;
end
% initial PSNR and SSIM
fprintf('%s: \n', TT_im_dir(i).name);
fprintf('The initial PSNR = %2.4f, SSIM = %2.4f. \n', csnr( Par.nim*255, Par.I*255, 0, 0 ), cal_ssim( Par.nim*255, Par.I*255, 0, 0 ));
% denoising
[IMout, Par] = TWSC_Sigma_RW(Par);
% calculate the PSNR
Par.PSNR(Par.Outerloop, Par.image) = csnr( IMout*255, Par.I*255, 0, 0 );
Par.SSIM(Par.Outerloop, Par.image) = cal_ssim( IMout*255, Par.I*255, 0, 0 );
%% output
imwrite(IMout, [write_sRGB_dir '/' method '_' dataset '_' IMname '.png']);
fprintf('%s : PSNR = %2.4f, SSIM = %2.4f \n',TT_im_dir(i).name, Par.PSNR(Par.Outerloop, Par.image),Par.SSIM(Par.Outerloop, Par.image) );
end
PSNR =Par.PSNR(end,:);
SSIM = Par.SSIM(end,:);
mPSNR=mean(PSNR,2);
mSSIM=mean(SSIM,2);
matname = sprintf([write_MAT_dir method '_' dataset '.mat']);
save(matname,'PSNR','SSIM','mPSNR','mSSIM');