-
Notifications
You must be signed in to change notification settings - Fork 18
/
litekmeans.m
457 lines (423 loc) · 16.2 KB
/
litekmeans.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
function [label, center, bCon, sumD, D] = litekmeans(X, k, varargin)
%LITEKMEANS K-means clustering, accelerated by matlab matrix operations.
%
% label = LITEKMEANS(X, K) partitions the points in the N-by-P data matrix
% X into K clusters. This partition minimizes the sum, over all
% clusters, of the within-cluster sums of point-to-cluster-centroid
% distances. Rows of X correspond to points, columns correspond to
% variables. KMEANS returns an N-by-1 vector label containing the
% cluster indices of each point.
%
% [label, center] = LITEKMEANS(X, K) returns the K cluster centroid
% locations in the K-by-P matrix center.
%
% [label, center, bCon] = LITEKMEANS(X, K) returns the bool value bCon to
% indicate whether the iteration is converged.
%
% [label, center, bCon, SUMD] = LITEKMEANS(X, K) returns the
% within-cluster sums of point-to-centroid distances in the 1-by-K vector
% sumD.
%
% [label, center, bCon, SUMD, D] = LITEKMEANS(X, K) returns
% distances from each point to every centroid in the N-by-K matrix D.
%
% [ ... ] = LITEKMEANS(..., 'PARAM1',val1, 'PARAM2',val2, ...) specifies
% optional parameter name/value pairs to control the iterative algorithm
% used by KMEANS. Parameters are:
%
% 'Distance' - Distance measure, in P-dimensional space, that KMEANS
% should minimize with respect to. Choices are:
% {'sqEuclidean'} - Squared Euclidean distance (the default)
% 'cosine' - One minus the cosine of the included angle
% between points (treated as vectors). Each
% row of X SHOULD be normalized to unit. If
% the intial center matrix is provided, it
% SHOULD also be normalized.
%
% 'Start' - Method used to choose initial cluster centroid positions,
% sometimes known as "seeds". Choices are:
% {'sample'} - Select K observations from X at random (the default)
% 'cluster' - Perform preliminary clustering phase on random 10%
% subsample of X. This preliminary phase is itself
% initialized using 'sample'. An additional parameter
% clusterMaxIter can be used to control the maximum
% number of iterations in each preliminary clustering
% problem.
% matrix - A K-by-P matrix of starting locations; or a K-by-1
% indicate vector indicating which K points in X
% should be used as the initial center. In this case,
% you can pass in [] for K, and KMEANS infers K from
% the first dimension of the matrix.
%
% 'MaxIter' - Maximum number of iterations allowed. Default is 100.
%
% 'Replicates' - Number of times to repeat the clustering, each with a
% new set of initial centroids. Default is 1. If the
% initial centroids are provided, the replicate will be
% automatically set to be 1.
%
% 'clusterMaxIter' - Only useful when 'Start' is 'cluster'. Maximum number
% of iterations of the preliminary clustering phase.
% Default is 10.
%
%
% Examples:
%
% fea = rand(500,10);
% [label, center] = litekmeans(fea, 5, 'MaxIter', 50);
%
% fea = rand(500,10);
% [label, center] = litekmeans(fea, 5, 'MaxIter', 50, 'Replicates', 10);
%
% fea = rand(500,10);
% [label, center, bCon, sumD, D] = litekmeans(fea, 5, 'MaxIter', 50);
% TSD = sum(sumD);
%
% fea = rand(500,10);
% initcenter = rand(5,10);
% [label, center] = litekmeans(fea, 5, 'MaxIter', 50, 'Start', initcenter);
%
% fea = rand(500,10);
% idx=randperm(500);
% [label, center] = litekmeans(fea, 5, 'MaxIter', 50, 'Start', idx(1:5));
%
%
% See also KMEANS
%
% [Cite] Deng Cai, "Litekmeans: the fastest matlab implementation of
% kmeans," Available at:
% http://www.zjucadcg.cn/dengcai/Data/Clustering.html, 2011.
%
% version 2.0 --December/2011
% version 1.0 --November/2011
%
% Written by Deng Cai (dengcai AT gmail.com)
if nargin < 2
error('litekmeans:TooFewInputs','At least two input arguments required.');
end
[n, p] = size(X);
pnames = { 'distance' 'start' 'maxiter' 'replicates' 'onlinephase' 'clustermaxiter'};
dflts = {'sqeuclidean' 'sample' [] [] 'off' [] };
[eid,errmsg,distance,start,maxit,reps,online,clustermaxit] = getargs(pnames, dflts, varargin{:});
if ~isempty(eid)
error(sprintf('litekmeans:%s',eid),errmsg);
end
if ischar(distance)
distNames = {'sqeuclidean','cosine'};
j = strcmpi(distance, distNames);
j = find(j);
if length(j) > 1
error('litekmeans:AmbiguousDistance', ...
'Ambiguous ''Distance'' parameter value: %s.', distance);
elseif isempty(j)
error('litekmeans:UnknownDistance', ...
'Unknown ''Distance'' parameter value: %s.', distance);
end
distance = distNames{j};
else
error('litekmeans:InvalidDistance', ...
'The ''Distance'' parameter value must be a string.');
end
center = [];
if ischar(start)
startNames = {'sample','cluster'};
j = find(strncmpi(start,startNames,length(start)));
if length(j) > 1
error(message('litekmeans:AmbiguousStart', start));
elseif isempty(j)
error(message('litekmeans:UnknownStart', start));
elseif isempty(k)
error('litekmeans:MissingK', ...
'You must specify the number of clusters, K.');
end
if j == 2
if floor(.1*n) < 5*k
j = 1;
end
end
start = startNames{j};
elseif isnumeric(start)
if size(start,2) == p
center = start;
elseif (size(start,2) == 1 || size(start,1) == 1)
center = X(start,:);
else
error('litekmeans:MisshapedStart', ...
'The ''Start'' matrix must have the same number of columns as X.');
end
if isempty(k)
k = size(center,1);
elseif (k ~= size(center,1))
error('litekmeans:MisshapedStart', ...
'The ''Start'' matrix must have K rows.');
end
start = 'numeric';
else
error('litekmeans:InvalidStart', ...
'The ''Start'' parameter value must be a string or a numeric matrix or array.');
end
% The maximum iteration number is default 100
if isempty(maxit)
maxit = 100;
end
% The maximum iteration number for preliminary clustering phase on random
% 10% subsamples is default 10
if isempty(clustermaxit)
clustermaxit = 10;
end
% Assume one replicate
if isempty(reps) || ~isempty(center)
reps = 1;
end
if ~(isscalar(k) && isnumeric(k) && isreal(k) && k > 0 && (round(k)==k))
error('litekmeans:InvalidK', ...
'X must be a positive integer value.');
elseif n < k
error('litekmeans:TooManyClusters', ...
'X must have more rows than the number of clusters.');
end
bestlabel = [];
sumD = zeros(1,k);
bCon = false;
for t=1:reps
switch start
case 'sample'
center = X(randsample(n,k),:);
case 'cluster'
Xsubset = X(randsample(n,floor(.1*n)),:);
[dump, center] = litekmeans(Xsubset, k, varargin{:}, 'start','sample', 'replicates',1 ,'MaxIter',clustermaxit);
case 'numeric'
end
last = 0;label=1;
it=0;
switch distance
case 'sqeuclidean'
while any(label ~= last) && it<maxit
last = label;
bb = full(sum(center.*center,2)');
ab = full(X*center');
D = bb(ones(1,n),:) - 2*ab;
[val,label] = min(D,[],2); % assign samples to the nearest centers
ll = unique(label);
if length(ll) < k
%disp([num2str(k-length(ll)),' clusters dropped at iter ',num2str(it)]);
missCluster = 1:k;
missCluster(ll) = [];
missNum = length(missCluster);
aa = sum(X.*X,2);
val = aa + val;
[dump,idx] = sort(val,1,'descend');
label(idx(1:missNum)) = missCluster;
end
E = sparse(1:n,label,1,n,k,n); % transform label into indicator matrix
center = full((E*spdiags(1./sum(E,1)',0,k,k))'*X); % compute center of each cluster
it=it+1;
end
if it<maxit
bCon = true;
end
if isempty(bestlabel)
bestlabel = label;
bestcenter = center;
if reps>1
if it>=maxit
aa = full(sum(X.*X,2));
bb = full(sum(center.*center,2));
ab = full(X*center');
D = bsxfun(@plus,aa,bb') - 2*ab;
D(D<0) = 0;
else
aa = full(sum(X.*X,2));
D = aa(:,ones(1,k)) + D;
D(D<0) = 0;
end
D = sqrt(D);
for j = 1:k
sumD(j) = sum(D(label==j,j));
end
bestsumD = sumD;
bestD = D;
end
else
if it>=maxit
aa = full(sum(X.*X,2));
bb = full(sum(center.*center,2));
ab = full(X*center');
D = bsxfun(@plus,aa,bb') - 2*ab;
D(D<0) = 0;
else
aa = full(sum(X.*X,2));
D = aa(:,ones(1,k)) + D;
D(D<0) = 0;
end
D = sqrt(D);
for j = 1:k
sumD(j) = sum(D(label==j,j));
end
if sum(sumD) < sum(bestsumD)
bestlabel = label;
bestcenter = center;
bestsumD = sumD;
bestD = D;
end
end
case 'cosine'
while any(label ~= last) && it<maxit
last = label;
W=full(X*center');
[val,label] = max(W,[],2); % assign samples to the nearest centers
ll = unique(label);
if length(ll) < k
missCluster = 1:k;
missCluster(ll) = [];
missNum = length(missCluster);
[dump,idx] = sort(val);
label(idx(1:missNum)) = missCluster;
end
E = sparse(1:n,label,1,n,k,n); % transform label into indicator matrix
center = full((E*spdiags(1./sum(E,1)',0,k,k))'*X); % compute center of each cluster
centernorm = sqrt(sum(center.^2, 2));
center = center ./ centernorm(:,ones(1,p));
it=it+1;
end
if it<maxit
bCon = true;
end
if isempty(bestlabel)
bestlabel = label;
bestcenter = center;
if reps>1
if any(label ~= last)
W=full(X*center');
end
D = 1-W;
for j = 1:k
sumD(j) = sum(D(label==j,j));
end
bestsumD = sumD;
bestD = D;
end
else
if any(label ~= last)
W=full(X*center');
end
D = 1-W;
for j = 1:k
sumD(j) = sum(D(label==j,j));
end
if sum(sumD) < sum(bestsumD)
bestlabel = label;
bestcenter = center;
bestsumD = sumD;
bestD = D;
end
end
end
end
label = bestlabel;
center = bestcenter;
if reps>1
sumD = bestsumD;
D = bestD;
elseif nargout > 3
switch distance
case 'sqeuclidean'
if it>=maxit
aa = full(sum(X.*X,2));
bb = full(sum(center.*center,2));
ab = full(X*center');
D = bsxfun(@plus,aa,bb') - 2*ab;
D(D<0) = 0;
else
aa = full(sum(X.*X,2));
D = aa(:,ones(1,k)) + D;
D(D<0) = 0;
end
D = sqrt(D);
case 'cosine'
if it>=maxit
W=full(X*center');
end
D = 1-W;
end
for j = 1:k
sumD(j) = sum(D(label==j,j));
end
end
function [eid,emsg,varargout]=getargs(pnames,dflts,varargin)
%GETARGS Process parameter name/value pairs
% [EID,EMSG,A,B,...]=GETARGS(PNAMES,DFLTS,'NAME1',VAL1,'NAME2',VAL2,...)
% accepts a cell array PNAMES of valid parameter names, a cell array
% DFLTS of default values for the parameters named in PNAMES, and
% additional parameter name/value pairs. Returns parameter values A,B,...
% in the same order as the names in PNAMES. Outputs corresponding to
% entries in PNAMES that are not specified in the name/value pairs are
% set to the corresponding value from DFLTS. If nargout is equal to
% length(PNAMES)+1, then unrecognized name/value pairs are an error. If
% nargout is equal to length(PNAMES)+2, then all unrecognized name/value
% pairs are returned in a single cell array following any other outputs.
%
% EID and EMSG are empty if the arguments are valid. If an error occurs,
% EMSG is the text of an error message and EID is the final component
% of an error message id. GETARGS does not actually throw any errors,
% but rather returns EID and EMSG so that the caller may throw the error.
% Outputs will be partially processed after an error occurs.
%
% This utility can be used for processing name/value pair arguments.
%
% Example:
% pnames = {'color' 'linestyle', 'linewidth'}
% dflts = { 'r' '_' '1'}
% varargin = {{'linew' 2 'nonesuch' [1 2 3] 'linestyle' ':'}
% [eid,emsg,c,ls,lw] = statgetargs(pnames,dflts,varargin{:}) % error
% [eid,emsg,c,ls,lw,ur] = statgetargs(pnames,dflts,varargin{:}) % ok
% We always create (nparams+2) outputs:
% one each for emsg and eid
% nparams varargs for values corresponding to names in pnames
% If they ask for one more (nargout == nparams+3), it's for unrecognized
% names/values
% Original Copyright 1993-2008 The MathWorks, Inc.
% Modified by Deng Cai (dengcai@gmail.com) 2011.11.27
% Initialize some variables
emsg = '';
eid = '';
nparams = length(pnames);
varargout = dflts;
unrecog = {};
nargs = length(varargin);
% Must have name/value pairs
if mod(nargs,2)~=0
eid = 'WrongNumberArgs';
emsg = 'Wrong number of arguments.';
else
% Process name/value pairs
for j=1:2:nargs
pname = varargin{j};
if ~ischar(pname)
eid = 'BadParamName';
emsg = 'Parameter name must be text.';
break;
end
i = strcmpi(pname,pnames);
i = find(i);
if isempty(i)
% if they've asked to get back unrecognized names/values, add this
% one to the list
if nargout > nparams+2
unrecog((end+1):(end+2)) = {varargin{j} varargin{j+1}};
% otherwise, it's an error
else
eid = 'BadParamName';
emsg = sprintf('Invalid parameter name: %s.',pname);
break;
end
elseif length(i)>1
eid = 'BadParamName';
emsg = sprintf('Ambiguous parameter name: %s.',pname);
break;
else
varargout{i} = varargin{j+1};
end
end
end
varargout{nparams+1} = unrecog;