forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
wide_deep_run_loop.py
133 lines (108 loc) · 4.91 KB
/
wide_deep_run_loop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Core run logic for TensorFlow Wide & Deep Tutorial using tf.estimator API."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import shutil
from absl import app as absl_app
from absl import flags
import tensorflow as tf # pylint: disable=g-bad-import-order
from official.utils.flags import core as flags_core
from official.utils.logs import hooks_helper
from official.utils.logs import logger
from official.utils.misc import model_helpers
LOSS_PREFIX = {'wide': 'linear/', 'deep': 'dnn/'}
def define_wide_deep_flags():
"""Add supervised learning flags, as well as wide-deep model type."""
flags_core.define_base(clean=True, train_epochs=True,
epochs_between_evals=True, stop_threshold=True,
hooks=True, export_dir=True)
flags_core.define_benchmark()
flags_core.define_performance(
num_parallel_calls=False, inter_op=True, intra_op=True,
synthetic_data=False, max_train_steps=False, dtype=False,
all_reduce_alg=False)
flags.adopt_module_key_flags(flags_core)
flags.DEFINE_enum(
name="model_type", short_name="mt", default="wide_deep",
enum_values=['wide', 'deep', 'wide_deep'],
help="Select model topology.")
flags.DEFINE_boolean(
name="download_if_missing", default=True, help=flags_core.help_wrap(
"Download data to data_dir if it is not already present."))
def export_model(model, model_type, export_dir, model_column_fn):
"""Export to SavedModel format.
Args:
model: Estimator object
model_type: string indicating model type. "wide", "deep" or "wide_deep"
export_dir: directory to export the model.
model_column_fn: Function to generate model feature columns.
"""
wide_columns, deep_columns = model_column_fn()
if model_type == 'wide':
columns = wide_columns
elif model_type == 'deep':
columns = deep_columns
else:
columns = wide_columns + deep_columns
feature_spec = tf.feature_column.make_parse_example_spec(columns)
example_input_fn = (
tf.estimator.export.build_parsing_serving_input_receiver_fn(feature_spec))
model.export_savedmodel(export_dir, example_input_fn,
strip_default_attrs=True)
def run_loop(name, train_input_fn, eval_input_fn, model_column_fn,
build_estimator_fn, flags_obj, tensors_to_log, early_stop=False):
"""Define training loop."""
model_helpers.apply_clean(flags.FLAGS)
model = build_estimator_fn(
model_dir=flags_obj.model_dir, model_type=flags_obj.model_type,
model_column_fn=model_column_fn,
inter_op=flags_obj.inter_op_parallelism_threads,
intra_op=flags_obj.intra_op_parallelism_threads)
run_params = {
'batch_size': flags_obj.batch_size,
'train_epochs': flags_obj.train_epochs,
'model_type': flags_obj.model_type,
}
benchmark_logger = logger.get_benchmark_logger()
benchmark_logger.log_run_info('wide_deep', name, run_params,
test_id=flags_obj.benchmark_test_id)
loss_prefix = LOSS_PREFIX.get(flags_obj.model_type, '')
tensors_to_log = {k: v.format(loss_prefix=loss_prefix)
for k, v in tensors_to_log.items()}
train_hooks = hooks_helper.get_train_hooks(
flags_obj.hooks, model_dir=flags_obj.model_dir,
batch_size=flags_obj.batch_size, tensors_to_log=tensors_to_log)
# Train and evaluate the model every `flags.epochs_between_evals` epochs.
for n in range(flags_obj.train_epochs // flags_obj.epochs_between_evals):
model.train(input_fn=train_input_fn, hooks=train_hooks)
results = model.evaluate(input_fn=eval_input_fn)
# Display evaluation metrics
tf.logging.info('Results at epoch %d / %d',
(n + 1) * flags_obj.epochs_between_evals,
flags_obj.train_epochs)
tf.logging.info('-' * 60)
for key in sorted(results):
tf.logging.info('%s: %s' % (key, results[key]))
benchmark_logger.log_evaluation_result(results)
if early_stop and model_helpers.past_stop_threshold(
flags_obj.stop_threshold, results['accuracy']):
break
# Export the model
if flags_obj.export_dir is not None:
export_model(model, flags_obj.model_type, flags_obj.export_dir,
model_column_fn)