-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathutils.py
33 lines (28 loc) · 948 Bytes
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import torch
import numpy as np
class LeastSquares:
# https://github.com/pytorch/pytorch/issues/27036
def __init__(self):
pass
def lstq(self, A, Y, lamb=0.0):
"""
Differentiable least square
:param A: m x n
:param Y: n x 1
"""
# Assuming A to be full column rank
cols = A.shape[1]
if cols == torch.matrix_rank(A):
q, r = torch.qr(A)
x = torch.inverse(r) @ q.T @ Y
else:
A_dash = A.permute(1, 0) @ A + lamb * torch.eye(cols)
Y_dash = A.permute(1, 0) @ Y
x = self.lstq(A_dash, Y_dash)
return x
def process_uv(uv_coords):
uv_coords[:, 0] = uv_coords[:, 0]
uv_coords[:, 1] = uv_coords[:, 1]
# uv_coords[:, 1] = uv_h - uv_coords[:, 1] - 1
uv_coords = np.hstack((uv_coords, np.ones((uv_coords.shape[0], 1)))) # add z
return uv_coords