-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathtest_cartpole.py
81 lines (63 loc) · 2.26 KB
/
test_cartpole.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import vrepper
from vrepper.vrepper import vrepper
import os,time
import numpy as np
import gym
from gym import spaces
# from gym.utils import colorize, seeding
class CartPoleVREPEnv(gym.Env):
def __init__(self,headless=False):
self.venv = venv = vrepper(headless=headless)
venv.start()
venv.load_scene(
os.getcwd() + '/scenes/cart_pole.ttt')
self.slider = venv.get_object_by_name('slider')
self.cart = venv.get_object_by_name('cart')
self.mass = venv.get_object_by_name('mass')
print('(CartPoleVREP) initialized')
obs = np.array([np.inf]*6)
act = np.array([1.])
self.action_space = spaces.Box(-act,act)
self.observation_space = spaces.Box(-obs,obs)
def _self_observe(self):
# observe then assign
cartpos = self.cart.get_position()
masspos = self.mass.get_position()
cartvel,cart_angvel = self.cart.get_velocity()
massvel,mass_angvel = self.cart.get_velocity()
self.observation = np.array([
cartpos[0],cartvel[0],
masspos[0],masspos[2],
massvel[0],massvel[2]
]).astype('float32')
def _step(self,actions):
actions = np.clip(actions, -1, 1)
v = actions[0]
# step
self.slider.set_velocity(v)
self.venv.step_blocking_simulation()
# observe again
self._self_observe()
# cost
height_of_mass = self.observation[3] # masspos[2]
cost = - height_of_mass + (v**2) * 0.001
return self.observation, -cost, False, {}
def _reset(self):
self.venv.stop_blocking_simulation()
self.venv.start_blocking_simulation()
self._self_observe()
return self.observation
def _destroy(self):
self.venv.stop_blocking_simulation()
self.venv.end()
if __name__ == '__main__':
env = CartPoleVREPEnv(headless=True)
for k in range(5):
observation = env.reset()
for _ in range(20):
# env.render()
action = env.action_space.sample() # your agent here (this takes random actions)
observation, reward, done, info = env.step(action)
print(reward)
print('simulation ended. leaving in 5 seconds...')
time.sleep(5)