-
Notifications
You must be signed in to change notification settings - Fork 0
/
terranmon.txt
771 lines (635 loc) · 23.5 KB
/
terranmon.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
1 byte = 2 pixels
560x448@4bpp = 125 440 bytes
560x448@8bpp = 250 880 bytes
-> 262144 bytes (256 kB)
[USER AREA | HW AREA]
Number of pheripherals = 8, of which the computer itself is considered as
a peripheral.
HW AREA = [Peripherals | MMIO | INTVEC]
User area: 8 MB, hardware area: 8 MB
8192 kB
User Space
1024 kB
Peripheral #8
1024 kB
Peripheral #7
...
1024 kB (where Peripheral #0 would be)
MMIO and Interrupt Vectors
128 kB
MMIO for Peri #8
128 kB
MMIO for Peri #7
...
128 kB (where Peripheral #0 would be)
MMIO for the computer
130816 bytes
MMIO for Ports, etc.
256 bytes
Vectors for 64 interrupts
--------------------------------------------------------------------------------
IO Device
Endianness: little
Note: Always takes up the peripheral slot of zero
Latching: latching is used to "lock" the fluctuating values when you attempt to read them so you would get
reliable values when you try to read them, especially the multibyte values where another byte would
change after you read one byte, e.g. System uptime in nanoseconds
MMIO
0..31 RO: Raw Keyboard Buffer read. Won't shift the key buffer
32..33 RO: Mouse X pos
34..35 RO: Mouse Y pos
36 RO: Mouse down? (1 for TRUE, 0 for FALSE)
37 RW: Read/Write single key input. Key buffer will be shifted. Manual writing is
usually unnecessary as such action must be automatically managed via LibGDX
input processing.
Stores ASCII code representing the character, plus:
(1..26: Ctrl+[alph])
3 : Ctrl+C
4 : Ctrl+D
8 : Backspace
(13: Return)
19: Up arrow
20: Down arrow
21: Left arrow
22: Right arrow
38 RW: Request keyboard input be read (TTY Function). Write nonzero value to enable, write zero to
close it. Keyboard buffer will be cleared whenever request is received, so
MAKE SURE YOU REQUEST THE KEY INPUT ONLY ONCE!
39 WO: Latch Key/Mouse Input (Raw Input function). Write nonzero value to latch.
Stores LibGDX Key code
40..47 RO: Key Press buffer
stores keys that are held down. Can accomodate 8-key rollover (in keyboard geeks' terms)
0x0 is written for the empty area; numbers are always sorted
48..51 RO: System flags
48: 0b rq00 000t
t: STOP button (should raise SIGTERM)
r: RESET button (hypervisor should reset the system)
q: SysRq button (hypervisor should respond to it)
64..67 RO: User area memory size in bytes
68 WO: Counter latch
0b 0000 00ba
a: System uptime
b: RTC
72..79 RO: System uptime in nanoseconds
80..87 RO: RTC in microseconds
88 RW: Rom mapping
89 RW: BMS flags
0b P000 b0ca
a: 1 if charging (accepting power from the AC adapter)
c: 1 if battery is detected
b: 1 if the device is battery-operated
P: 1 if CPU halted (so that the "smart" power supply can shut itself down)
note: only the high nybbles are writable!
if the device is battery-operated but currently running off of an AC adapter and there is no battery inserted,
the flag would be 0000 1001
90 RO: BMS calculated battery percentage where 255 is 100%
91 RO: BMS battery voltage multiplied by 10 (127 = "12.7 V")
1024..2047 RW: Reserved for integrated peripherals (e.g. built-in status display)
2048..4075 RW: Used by the hypervisor
2048..2051 RW: Status flags
4076..4079 RW: 8-bit status code for the port
4080..4083 RO: 8-bit status code for connected device
4084..4091 RO: Block transfer status
0b nnnnnnnn a00z mmmm
n-read: size of the block from the other device, LSB (4096-full block size is zero)
m-read: size of the block from the other device, MSB (4096-full block size is zero)
a-read: if the other device hasNext (doYouHaveNext), false if device not present
z-read: set if the size is actually 0 instead of 4096 (overrides n and m parameters)
n-write: size of the block I'm sending, LSB (4096-full block size is zero)
m-write: size of the block I'm sending, MSB (4096-full block size is zero)
a-write: if there's more to send (hasNext)
z-write: set if the size is actually 0 instead of 4096 (overrides n and m parameters)
4092..4095 RW: Block transfer control for Port 1 through 4
0b 00ms abcd
m-readonly: device in master setup
s-readonly: device in slave setup
a: 1 for send, 0 for receive
b-write: 1 to start sending if a-bit is set; if a-bit is unset, make other device to start sending
b-read: if this bit is set, you're currently receiving something (aka busy)
c-write: I'm ready to receive
c-read: Are you ready to receive?
d-read: Are you there? (if the other device's recipient is myself)
NOTE: not ready AND not busy (bits b and d set when read) means the device is not connected to the port
4096..8191 RW: Buffer for block transfer lane #1
8192..12287 RW: Buffer for block transfer lane #2
12288..16383 RW: Buffer for block transfer lane #3
16384..20479 RW: Buffer for block transfer lane #4
65536..131071 RO: Mapped to ROM
--------------------------------------------------------------------------------
VRAM Bank 0 (256 kB)
Endianness: little
From the start of the memory space:
250880 bytes
Framebuffer
3 bytes
Initial background (and the border) colour RGB, 8 bits per channel
1 byte
command (writing to this memory address changes the status)
1: reset palette to default
2: fill framebuffer with given colour (arg1)
3: do '1' then do '2' (with arg1) then do '4' (with arg2)
4: fill framebuffer2 with given colour (arg1)
16: copy Low Font ROM (char 0–127) to mapping area
17: copy High Font ROM (char 128–255) to mapping area
18: write contents of the font ROM mapping area to the Low Font ROM
19: write contents of the font ROM mapping area to the High Font ROM
20: reset Low Font ROM to default
21: reset High Font ROM to default
12 bytes
argument for "command" (arg1: Byte, arg2: Byte)
write to this address FIRST and then write to "command" to execute the command
1134 bytes
unused
2 bytes
Cursor position in: (y*80 + x)
2560 bytes
Text foreground colours
2560 bytes
Text background colours
2560 bytes
Text buffer of 80x32 (7x14 character size, and yes: actual character data is on the bottom)
512 bytes
Palette stored in following pattern: 0b rrrr gggg, 0b bbbb aaaa, ....
Palette number 255 is always full transparent (bits being all zero)
(DRAFT) Optional Sprite Card (VRAM Bank 1 (256 kB))
250880 bytes
One of:
Secondary layer
Other 8-bit of the primary framebuffer (4K colour mode)
SPRITE FORMAT DRAFT 1
533 bytes: Sprite attribute table
(41 sprites total, of which 1 is GUI cursor)
12 bytes - signed fixed point
X-position
Y-position
Transform matrix A..D
1 bytes
0b 0000 00vp
(p: 0 for above-all, 1 for below-text, v: show/hide)
10496 bytes: Sprite table
256 bytes
16x16 texture for the sprite
235 bytes:
unused
SPRITE FORMAT DRAFT 2
DMA Sprite Area - 18 bytes each, total of ??? sprites
1 byte
Sprite width
1 byte
Sprite height
12 bytes - signed fixed point
Affine transformation A,B,C,D,X,Y
1 byte
Attributes
0b 0000 00vp
(p: 0 for above-all, 1 for below-text, v: show/hide)
3 bytes
Pointer to raw pixmap data in Scratchpad Memory
MMIO
0..1 RO
Framebuffer width in pixels
2..3 RO
Framebuffer height in pixels
4 RO
Text mode columns
5 RO
Text mode rows
6 RW
Text-mode attributes
0b 0000 00rc (r: TTY Raw mode, c: Cursor blink)
7 RW
Graphics-mode attributes
0b 0000 rrrr (r: Resolution/colour depth)
8 RO
Last used colour (set by poking at the framebuffer)
9 RW
current TTY foreground colour (useful for print() function)
10 RW
current TTY background colour (useful for print() function)
11 RO
Number of Banks, or VRAM size (1 = 256 kB, max 4)
12 RW
Graphics Mode
0: 560x448, 256 Colours, 1 layer
1: 280x224, 256 Colours, 4 layers
2: 280x224, 4096 Colours, 2 layers
3: 560x448, 256 Colours, 2 layers (if bank 2 is not installed, will fall back to mode 0)
4: 560x448, 4096 Colours, 1 layer (if bank 2 is not installed, will fall back to mode 0)
4096 is also known as "direct colour mode" (4096 colours * 16 transparency -> 65536 colours)
Two layers are grouped to make a frame, "low layer" contains RG colours and "high layer" has BA colours,
Red and Blue occupies MSBs
13 RW
Layer Arrangement
If 4 layers are used:
Num LO<->HI
0 1234
1 1243
2 1324
3 1342
4 1423
5 1432
6 2134
7 2143
8 2314
9 2341
10 2413
11 2431
12 3124
13 3142
14 3214
15 3241
16 3412
17 3421
18 4123
19 4132
20 4213
21 4231
22 4312
23 4321
If 2 layers are used:
Num LO<->HI
0 12
1 12
2 12
3 12
4 12
5 12
6 12
7 21
8 21
9 21
10 21
11 21
12 12
13 12
14 21
15 21
16 12
17 21
18 12
19 12
20 21
21 21
22 12
23 21
If 1 layer is used, this field will do nothing and always fall back to 0
14..15 RW
framebuffer scroll X
16..17 RW
framebuffer scroll Y
18 RO
Busy flags
1: Codec in-use
2: Draw Instructions being decoded
19 WO
Write non-zero value to initiate the Draw Instruction decoding
20..21 RO
Program Counter for the Draw Instruction decoding
1024..2047 RW
horizontal scroll offset for scanlines
2048..4095 RW
!!NEW!! Font ROM Mapping Area
Format is always 8x16 pixels, 1bpp ROM format (so that it would be YY_CHR-Compatible)
(designer's note: it's still useful to divide the char rom to two halves, lower half being characters ROM and upper half being symbols ROM)
65536..131071 RW
Draw Instructions
Text-mode-font-ROM is immutable and does not belong to VRAM
Even in the text mode framebuffer is still being drawn onto the screen, and the texts are drawn on top of it
Copper Commands (suggestion withdrawn)
WAITFOR 3,32
80·03 46 00 (0x004603: offset on the framebuffer)
SCROLLX 569
A0·39 02 00
SCROLLY 321
B0·41 01 00
SETPAL 5 (15 2 8 15)
C0·05·F2 8F (0x05: Palette number, 0xF28F: RGBA colour)
SETBG (15 2 8 15)
D0·00·F2 8F (0xF28F: RGBA colour)
END (pseudocommand of WAITFOR)
80·FF FF FF
--------------------------------------------------------------------------------
TSVM MOV file format
Endianness: Little
\x1F T S V M M O V
[METADATA]
[PACKET 0]
[PACKET 1]
[PACKET 2]
...
where:
METADATA -
uint16 WIDTH
uint16 HEIGHT
uint16 FPS (0: play as fast as can)
uint32 NUMBER OF FRAMES
uint16 UNUSED (fill with 255,0)
uint16 AUDIO QUEUE INFO
when read as little endian:
0b nnnn bbbb bbbb bbbb
[byte 21] [byte 20]
n: size of the queue (number of entries). Allocate at least 1 more entry than the number specified!
b: size of each entry in bytes DIVIDED BY FOUR (all zero = 16384; always 0x240 for MP2 because MP2-VBR is not supported)
n=0 indicates the video audio must be decoded on-the-fly instead of being queued, or has no audio packets
byte[10] RESERVED
Packet Types -
<video>
0,0: 256-Colour frame
1,0: 256-Colour frame with palette data
2,0: 4096-Colour frame (stored as two byte-planes)
4,t: iPF no-alpha indicator (see iPF Type Numbers for details)
5,t: iPF with alpha indicator (see iPF Type Numbers for details)
16,0: Series of JPEGs
18,0: Series of PNGs
20,0: Series of TGAs
21,0: Series of TGA/GZs
<audio>
0,16: Raw PCM Stereo
1,16: Raw PCM Mono
p,17: MP2, 32 kHz (see MP2 Format Details section for p-value)
q,18: ADPCM, 32 kHz (q = 2 * log_2(frameSize) + (1 if mono, 0 if stereo))
<special>
255,255: sync packet (wait until the next frame)
254,255: background colour packet
Packet Type High Byte (iPF Type Numbers)
0..7: iPF Type 1..8
128..135: Patch-encoded iPF Type 1..8
- MP2 Format Details
Rate | 2ch | 1ch
32 | 0 | 1
48 | 2 | 3
56 | 4 | 5
64 | 6 | 7 (libtwolame does not allow bitrate lower than this on 32 kHz stereo)
80 | 8 | 9
96 | 10 | 11
112 | 12 | 13
128 | 14 | 15
160 | 16 | 17
192 | 18 | 19
224 | 20 | 21
256 | 22 | 23
320 | 24 | 25
384 | 26 | 27
Add 128 to the resulting number if the frame has a padding bit (should not happen on 32kHz sampling rate)
Special value of 255 may indicate some errors
To encode an audio to compliant format, use ffmpeg: ffmpeg -i <your_music> -acodec libtwolame -psymodel 4 -b:a <rate>k -ar 32000 <output.mp2>
Rationale:
-acodec libtwolame : ffmpeg has two mp2 encoders, and libtwolame produces vastly higher quality audio
-psymodel 4 : use alternative psychoacoustic model -- the default model (3) tends to insert "clunk" sounds throughout the audio
-b:a : 256k is recommended for high quality audio (trust me, you don't need 384k)
-ar 32000 : resample the audio to 32kHz, the sampling rate of the TSVM soundcard
TYPE 0 Packet -
uint32 SIZE OF COMPRESSED FRAMEDATA
* COMPRESSED FRAMEDATA
TYPE 1 Packet -
byte[512] Palette Data
uint32 SIZE OF COMPRESSED FRAMEDATA
* COMPRESSED FRAMEDATA
TYPE 2 Packet -
uint32 SIZE OF COMPRESSED FRAMEDATA BYTE-PLANE 1
* COMPRESSED FRAMEDATA
uint32 SIZE OF COMPRESSED FRAMEDATA BYTE-PLANE 2
* COMPRESSED FRAMEDATA
iPF Packet -
uint32 SIZE OF COMPRESSED FRAMEDATA
* COMPRESSED FRAMEDATA // only the actual gzip (and no UNCOMPRESSED SIZE) of the "Blocks.gz" is stored
Patch-encoded iPF Packet -
uint32 SIZE OF COMPRESSED PATCHES
* COMPRESSED PATCHES
PATCHES are bunch of PATCHes concatenated
where each PATCH is encoded as:
uint8 X-coord of the patch (pixel position divided by four)
uint8 Y-coord of the patch (pixel position divided by four)
uint8 width of the patch (size divided by four)
uint8 height of the patch (size divided by four)
(calculating uncompressed size)
(iPF1 no alpha: width * height * 12)
(iPF1 with alpha: width * height * 20)
(iPF2 no alpha: width * height * 16)
(iPF2 with alpha: width * height * 24)
* UN-COMPRESSED PATCHDATA
TYPE 16+ Packet -
uint32 SIZE OF COMPRESSED FRAMEDATA BYTE-PLANE 1
* FRAMEDATA (COMPRESSED for TGA/GZ)
MP2 Packet & ADPCM Packet -
uint16 TYPE OF PACKET // follows the Metadata Packet Type scheme
* MP2 FRAME/ADPCM BLOCK
Sync Packet (subset of GLOBAL TYPE 255 Packet) -
uint16 0xFFFF (type of packet for Global Type 255)
Background Colour Packet -
uint16 0xFEFF
uint8 Red (0-255)
uint8 Green (0-255)
uint8 Blue (0-255)
uint8 0x00 (pad byte)
Frame Timing
If the global type is not 255, each packet is interpreted as a single full frame, and then will wait for the next
frame time; For type 255 however, the assumption no longer holds and each frame can have multiple packets, and thus
needs explicit "sync" packet for proper frame timing.
Comperssion Method
Old standard used Gzip, new standard is Zstd.
tsvm will read the zip header and will use appropriate decompression method, so that the old Gzipped
files remain compatible.
NOTE FROM DEVELOPER
In the future, the global packet type will be deprecated.
--------------------------------------------------------------------------------
TSVM Interchangeable Picture Format (aka iPF Type 1/2)
Image is divided into 4x4 blocks and each block is serialised, then the entire iPF blocks are gzipped
# File Structure
\x1F T S V M i P F
[HEADER]
[Blocks]
- Header
uint16 WIDTH
uint16 HEIGHT
uint8 Flags
0b p00z 000a
- a: has alpha
- z: gzipped (p flag always sets this flag)
- p: progressive ordering (Adam7)
uint8 iPF Type/Colour Mode
0: Type 1 (4:2:0 chroma subsampling; 2048 colours?)
1: Type 2 (4:2:2 chroma subsampling; 2048 colours?)
byte[10] RESERVED
uint32 UNCOMPRESSED SIZE (somewhat redundant but included for convenience)
- Chroma Subsampled Blocks
Gzipped unless the z-flag is not set.
4x4 pixels are sampled, then divided into YCoCg planes.
CoCg planes are "chroma subsampled" by 4:2:0, then quantised to 4 bits (8 bits for CoCg combined)
Y plane is quantised to 4 bits
By doing so, CoCg planes will reduce to 4 pixels
For the description of packing, pixels in Y/Cx plane will be numbered as:
Y0 Y1 Y2 Y3 || Cx1 Cx2 | Cx1 Cx2
Y4 Y5 Y6 Y7 || (iPF 1) | Cx3 Cx4
Y8 Y9 YA YB || Cx3 Cx4 | Cx5 Cx6
YC YD YE YF || (iPF 1) | Cx7 Cx8
Bits are packed like so:
iPF1:
uint16 [Co4 | Co3 | Co2 | Co1]
uint16 [Cg4 | Cg3 | Cg2 | Cg1]
uint16 [Y1 | Y0 | Y5 | Y4]
uint16 [Y3 | Y2 | Y7 | Y6]
uint16 [Y9 | Y8 | YD | YC]
uint16 [YB | YA | YF | YE]
(total: 12 bytes)
iPF2:
uint32 [Co8 | Co7 | Co6 | Co5 | Co4 | Co3 | Co2 | Co1]
uint32 [Cg8 | Cg7 | Cg6 | Cg5 | Cg4 | Cg3 | Cg2 | Cg1]
uint16 [Y1 | Y0 | Y5 | Y4]
uint16 [Y3 | Y2 | Y7 | Y6]
uint16 [Y9 | Y8 | YD | YC]
uint16 [YB | YA | YF | YE]
(total: 16 bytes)
If has alpha, append following bytes for alpha values
uint16 [a1 | a0 | a5 | a4]
uint16 [a3 | a2 | a7 | a6]
uint16 [a9 | a8 | aD | aC]
uint16 [aB | aA | aF | aE]
(total: 20/24 bytes)
Subsampling mask:
Least significant byte for top-left, most significant for bottom-right
For example, this default pattern
00 00 01 01
00 00 01 01
10 10 11 11
10 10 11 11
turns into:
01010000 -> 0x30
01010000 -> 0x30
11111010 -> 0xFA
11111010 -> 0xFA
which packs into: [ 30 | 30 | FA | FA ] (because little endian)
- Progressive Blocks
Ordered string of words (word size varies by the colour mode) are stored here.
If progressive mode is enabled, words are stored in the order that accomodates it.
--------------------------------------------------------------------------------
Sound Adapter
Endianness: little
0..114687 RW: Sample bin
114688..131071 RW: Instrument bin (256 instruments, 64 bytes each)
131072..196607 RW: Play data 1
196608..262143 RW: Play data 2
Sample bin: just raw sample data thrown in there. You need to keep track of starting point for each sample
Instrument bin: Registry for 256 instruments, formatted as:
Uint16 Sample Pointer
Uint16 Sample length
Uint16 Sampling rate at C3
Uint16 Play Start (usually 0 but not always)
Uint16 Loop Start (can be smaller than Play Start)
Uint16 Loop End
Bit32 Flags
0b h000 00pp
h: sample pointer high bit
pp: loop mode. 0-no loop, 1-loop, 2-backandforth, 3-oneshot (ignores note length unless overridden by other notes)
Bit16x24 Volume envelopes
Byte 1: Volume
Byte 2: Second offset from the prev point, in 3.5 Unsigned Minifloat
Play Data: play data are series of tracker-like instructions, visualised as:
rr||NOTE|Ins|E.Vol|E.Pan|EE.ff|
63||FFFF|255|3+ 64|3+ 64|16 FF| (8 bytes per line, 512 bytes per pattern, 256 patterns on 128 kB block)
notes are tuned as 4096 Tone-Equal Temperament. Tuning is set per-sample using their Sampling rate value.
Sound Adapter MMIO
0..1 RW: Play head #1 position
2..3 RW: Play head #1 length param
4 RW: Play head #1 master volume
5 RW: Play head #1 master pan
6..9 RW: Play head #1 flags
10..11 RW:Play head #2 position
12..13 RW:Play head #2 length param
14 RW: Play head #2 master volume
15 RW: Play head #2 master pan
16..19 RW:Play head #2 flags
... auto-fill to Play head #4
40 WO: Media Decoder Control
Write 16 to initialise the MP2 context (call this before the decoding of NEW music)
Write 1 to decode the frame as MP2
When called with byte 17, initialisation will precede before the decoding
41 RO: Media Decoder Status
Non-zero value indicates the decoder is busy
64..2367 RW: MP2 Decoded Samples (unsigned 8-bit stereo)
2368..4095 RW: MP2 Frame to be decoded
4096..4097 RO: MP2 Frame guard bytes; always return 0 on read
Sound Hardware Info
- Sampling rate: 32000 Hz
- Bit depth: 8 bits/sample, unsigned
- Always operate in stereo (mono samples must be expanded to stereo before uploading)
Play Head Position
- Tracker mode: Cuesheet Counter
- PCM mode: Number of buffers uploaded and received by the adapter
Length Param
PCM Mode: length of the samples to upload to the speaker
Tracker mode: unused
Play Head Flags
Byte 1
- 0b mrqp ssss
m: mode (0 for Tracker, 1 for PCM)
r: reset parameters; always 0 when read
resetting will:
set position to 0,
set length param to 0,
set queue capacity to 8 samples,
unset play bit
q: purge queues (likely do nothing if not PCM); always 0 when read
p: play (0 if not -- mute all output)
ssss: PCM Mode set PCM Queue Size
0 - 4 samples
1 - 6 samples
2 - 8 samples (the default size)
3 - 12 samples
4 - 16 samples
5 - 24 samples
6 - 32 samples
7 - 48 samples
8 - 64 samples
9 - 96 samples
10 - 128 samples
11 - 192 samples
12 - 256 samples
13 - 384 samples
14 - 512 samples
15 - 768 samples
NOTE: changing from PCM mode to Tracker mode or vice versa will also reset the parameters as described above
Byte 2
- PCM Mode: Write non-zero value to start uploading; always 0 when read
Byte 3 (Tracker Mode)
- BPM (24 to 280. Play Data will change this register)
Byte 4 (Tracker Mode)
- Tick Rate (Play Data will change this register)
Uploaded PCM data will be stored onto the queue before being consumed by hardware.
If the queue is full, any more uploads will be silently discarded.
32768..65535 RW: Cue Sheet (2048 cues)
Byte 1..15: pattern number for voice 1..15
Byte 16: instruction
1 xxxxxxx - Go back (128, 1-127) patterns to form a loop
01 xxxxxx -
001 xxxxx -
0001 xxxx - Skip (16, 1-15) patterns
00001 xxx -
000001 xx -
0000001 x -
0000000 1 -
0000000 0 - No operation
65536..131071 RW: PCM Sample buffer
--------------------------------------------------------------------------------
RomBank / RamBank
Endianness: Little
MMIO
0 RW : Bank number for the first 512 kbytes
1 RW : Bank number for the last 512 kbytes
16..23 RW : DMA Control for Lane 1..8
Write 0x01: copy from Scratchpad to Peripheral
Write 0x02: copy from Peripleral to Scratchpad
* NOTE: after the transfer, the bank numbers will revert to the value that was befer the operation
24..31 RW : DMA Control reserved
32..34 RW : DMA Lane 1 -- Addr on the Scratchpad Memory
35..37 RW : DMA Lane 1 -- Addr on the Peripheral's Memory (addr can be across-the-bank)
38..40 RW : DMA Lane 1 -- Transfer Length
41..42 RW : DMA Lane 1 -- First/Last Bank Number
43 RW : DMA Lane 1 -- (reserved)
44..55 RW : DMA Lane 2 Props
56..67 RW : DMA Lane 3 Props
68..79 RW : DMA Lane 4 Props
80..91 RW : DMA Lane 5 Props
92..103 RW : DMA Lane 6 Props
104..115 RW : DMA Lane 7 Props
116..127 RW : DMA Lane 8 Props