forked from Mehran-k/SimplE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcomplEx.py
executable file
·47 lines (39 loc) · 3.13 KB
/
complEx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#Copyright (C) 2018 Seyed Mehran Kazemi, Licensed under the GPL V3; see: <https://www.gnu.org/licenses/gpl-3.0.en.html>
from tensor_factorizer import *
from reader import *
class ComplEx(TensorFactorizer):
def __init__(self, params, dataset="wn18"):
TensorFactorizer.__init__(self, model_name="ComplEx", loss_function="likelihood", params=params, dataset=dataset)
def setup_weights(self):
sqrt_size = 6.0 / math.sqrt(self.params.emb_size)
self.rel_emb_real = tf.get_variable(name="rel_emb_real", dtype=tf.float64, initializer=tf.random_uniform(shape=[self.num_rel, self.params.emb_size], minval=-sqrt_size, maxval=sqrt_size, dtype=tf.float64))
self.rel_emb_img = tf.get_variable(name="rel_emb_img", dtype=tf.float64, initializer=tf.random_uniform(shape=[self.num_rel, self.params.emb_size], minval=-sqrt_size, maxval=sqrt_size, dtype=tf.float64))
self.ent_emb_real = tf.get_variable(name="ent_emb_real", dtype=tf.float64, initializer=tf.random_uniform(shape=[self.num_ent, self.params.emb_size], minval=-sqrt_size, maxval=sqrt_size, dtype=tf.float64))
self.ent_emb_img = tf.get_variable(name="ent_emb_img", dtype=tf.float64, initializer=tf.random_uniform(shape=[self.num_ent, self.params.emb_size], minval=-sqrt_size, maxval=sqrt_size, dtype=tf.float64))
self.var_list = [self.rel_emb_real, self.rel_emb_img, self.ent_emb_real, self.ent_emb_img]
def define_regularization(self):
self.regularizer = (tf.nn.l2_loss(self.rel_emb_real) + tf.nn.l2_loss(self.rel_emb_img) + tf.nn.l2_loss(self.ent_emb_real) + tf.nn.l2_loss(self.ent_emb_img)) / self.num_batch
def gather_train_embeddings(self):
self.head_real = tf.gather(self.ent_emb_real, self.head)
self.head_img = tf.gather(self.ent_emb_img, self.head)
self.rel_real = tf.gather(self.rel_emb_real, self.rel)
self.rel_img = tf.gather(self.rel_emb_img, self.rel)
self.tail_real = tf.gather(self.ent_emb_real, self.tail)
self.tail_img = tf.gather(self.ent_emb_img, self.tail)
def gather_test_embeddings(self):
self.gather_train_embeddings()
def create_train_model(self):
self.dot1 = tf.reduce_sum(tf.multiply(self.rel_real, tf.multiply(self.head_real, self.tail_real)), 1)
self.dot2 = tf.reduce_sum(tf.multiply(self.rel_real, tf.multiply(self.head_img, self.tail_img)), 1)
self.dot3 = tf.reduce_sum(tf.multiply(self.rel_img, tf.multiply(self.head_real, self.tail_img)), 1)
self.dot4 = tf.reduce_sum(tf.multiply(self.rel_img, tf.multiply(self.head_img, self.tail_real)), 1)
self.init_scores = self.dot1 + self.dot2 + self.dot3 - self.dot4
self.scores = tf.clip_by_value(self.init_scores, -20, 20)
self.labels = self.y
def create_test_model(self):
self.dot1 = tf.reduce_sum(tf.multiply(self.rel_real, tf.multiply(self.head_real, self.tail_real)), 1)
self.dot2 = tf.reduce_sum(tf.multiply(self.rel_real, tf.multiply(self.head_img, self.tail_img)), 1)
self.dot3 = tf.reduce_sum(tf.multiply(self.rel_img, tf.multiply(self.head_real, self.tail_img)), 1)
self.dot4 = tf.reduce_sum(tf.multiply(self.rel_img, tf.multiply(self.head_img, self.tail_real)), 1)
self.init_scores = self.dot1 + self.dot2 + self.dot3 - self.dot4
self.dissims = -tf.clip_by_value(self.init_scores, -20, 20)