-
Notifications
You must be signed in to change notification settings - Fork 1
/
vgg.py
114 lines (95 loc) · 3.91 KB
/
vgg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
# Copyright (c) 2015-2018 Anish Athalye. Released under GPLv3.
import tensorflow as tf
import numpy as np
import scipy.io
VGG19_LAYERS = (
'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1',
'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',
'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3',
'relu3_3', 'conv3_4', 'relu3_4', 'pool3',
'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'conv4_3',
'relu4_3', 'conv4_4', 'relu4_4', 'pool4',
'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'conv5_3',
'relu5_3', 'conv5_4', 'relu5_4'
)
def load_net(data_path):
data = scipy.io.loadmat(data_path)
if 'normalization' in data:
# old format, for data where
# MD5(imagenet-vgg-verydeep-19.mat) = 8ee3263992981a1d26e73b3ca028a123
mean_pixel = np.mean(data['normalization'][0][0][0], axis=(0, 1))
else:
# new format, for data where
# MD5(imagenet-vgg-verydeep-19.mat) = 106118b7cf60435e6d8e04f6a6dc3657
mean_pixel = data['meta']['normalization'][0][0][0][0][2][0][0]
weights = data['layers'][0]
return weights, mean_pixel
def net_preloaded(weights, input_image, pooling):
net = {}
current = input_image
for i, name in enumerate(VGG19_LAYERS):
kind = name[:4]
if kind == 'conv':
if isinstance(weights[i][0][0][0][0], np.ndarray):
# old format
kernels, bias = weights[i][0][0][0][0]
else:
# new format
kernels, bias = weights[i][0][0][2][0]
# matconvnet: weights are [width, height, in_channels, out_channels]
# tensorflow: weights are [height, width, in_channels, out_channels]
kernels = np.transpose(kernels, (1, 0, 2, 3))
bias = bias.reshape(-1)
current = _conv_layer(current, kernels, bias)
elif kind == 'relu':
current = tf.nn.relu(current)
elif kind == 'pool':
current = _pool_layer(current, pooling)
net[name] = current
assert len(net) == len(VGG19_LAYERS)
return net
def net_preloaded_mask(weights, input_image, input_mask, pooling):
net = {}
mask_net = {}
current = input_image
mask_current = input_mask
for i, name in enumerate(VGG19_LAYERS):
kind = name[:4]
if kind == 'conv':
if isinstance(weights[i][0][0][0][0], np.ndarray):
# old format
kernels, bias = weights[i][0][0][0][0]
else:
# new format
kernels, bias = weights[i][0][0][2][0]
# matconvnet: weights are [width, height, in_channels, out_channels]
# tensorflow: weights are [height, width, in_channels, out_channels]
kernels = np.transpose(kernels, (1, 0, 2, 3))
bias = bias.reshape(-1)
current = _conv_layer(current, kernels, bias)
mask_current = _conv_layer(mask_current, kernels, bias)
elif kind == 'relu':
current = tf.nn.relu(current)
mask_current = tf.nn.relu(mask_current)
elif kind == 'pool':
current = _pool_layer(current, pooling)
mask_current = _pool_layer(mask_current, pooling)
net[name] = current
mask_net[name] = mask_current
assert len(net) == len(VGG19_LAYERS)
return net, mask_net
def _conv_layer(input, weights, bias):
conv = tf.nn.conv2d(input, tf.constant(weights), strides=(1, 1, 1, 1),
padding='SAME')
return tf.nn.bias_add(conv, bias)
def _pool_layer(input, pooling):
if pooling == 'avg':
return tf.nn.avg_pool(input, ksize=(1, 2, 2, 1), strides=(1, 2, 2, 1),
padding='SAME')
else:
return tf.nn.max_pool(input, ksize=(1, 2, 2, 1), strides=(1, 2, 2, 1),
padding='SAME')
def preprocess(image, mean_pixel):
return image - mean_pixel
def unprocess(image, mean_pixel):
return image + mean_pixel