forked from rmalouf/learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
serbian-rw.py
59 lines (45 loc) · 1.38 KB
/
serbian-rw.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#!/usr/bin/env python
## Rescorla-Wagner learning model
import os,sys
from time import time
from multiprocessing import Pool
import pandas as pd
import numpy as np
from sklearn.feature_extraction import DictVectorizer
import ndl
# http://stackoverflow.com/questions/15639779
os.system("taskset -p 0xff %d" % os.getpid())
def simulate(i):
global data
W = ndl.rw(data,M=1000000)
return i,W
def main():
global data
# baseline using equilibrium equations
data = pd.read_csv('serbian.csv')
W0 = ndl.ndl(data)
diff = np.zeros_like(W0)
W = np.zeros_like(W0)
# simulate learning for R individuals
R = 1000
now = time()
P = Pool(6)
for i,W1 in P.imap_unordered(simulate,xrange(R)):
diff += abs(W1 - W0)
W += W1
print >>sys.stderr,i,time()-now
diff = diff / R
W = W / R
# get cue-outcome co-occurrence frequencies
cues = DictVectorizer(dtype=int,sparse=False)
D = cues.fit_transform([ndl.explode(c) for c in data.Cues])
out = DictVectorizer(dtype=int,sparse=False)
X = out.fit_transform([ndl.explode(c) for c in data.Outcomes]) * data.Frequency[:,np.newaxis]
O = np.zeros_like(W0)
for i in xrange(len(X)):
for nz in np.nonzero(D[i]):
O[nz] += X[i]
# save results
np.savez('serbian-rw',diff=diff,W0=W0.as_matrix(),O=O,W=W)
if __name__ == '__main__':
main()