-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathingest.py
62 lines (48 loc) · 2.03 KB
/
ingest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import os
from langchain.document_loaders import (
DirectoryLoader,
PyPDFLoader,
TextLoader,
UnstructuredMarkdownLoader,
)
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
ABS_PATH: str = os.path.dirname(os.path.abspath(__file__))
DB_DIR: str = os.path.join(ABS_PATH, "db")
# Create vector database
def create_vector_database():
"""
Creates a vector database using document loaders and embeddings.
This function loads data from PDF, markdown and text files in the 'data/' directory,
splits the loaded documents into chunks, transforms them into embeddings using HuggingFace,
and finally persists the embeddings into a Chroma vector database.
"""
# Initialize loaders for different file types
pdf_loader = DirectoryLoader("data/", glob="**/*.pdf", loader_cls=PyPDFLoader)
markdown_loader = DirectoryLoader(
"data/", glob="**/*.md", loader_cls=UnstructuredMarkdownLoader
)
text_loader = DirectoryLoader("data/", glob="**/*.txt", loader_cls=TextLoader)
all_loaders = [pdf_loader, markdown_loader, text_loader]
# Load documents from all loaders
loaded_documents = []
for loader in all_loaders:
loaded_documents.extend(loader.load())
# Split loaded documents into chunks
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=40)
chunked_documents = text_splitter.split_documents(loaded_documents)
# Initialize HuggingFace embeddings
huggingface_embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={"device": "cpu"},
)
# Create and persist a Chroma vector database from the chunked documents
vector_database = Chroma.from_documents(
documents=chunked_documents,
embedding=huggingface_embeddings,
persist_directory=DB_DIR,
)
vector_database.persist()
if __name__ == "__main__":
create_vector_database()