-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSIMIP_ice_mass_budget_read_plot_write_demo_CESM.py
221 lines (184 loc) · 7.69 KB
/
SIMIP_ice_mass_budget_read_plot_write_demo_CESM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
#--------------------------------------------------------------------
# Example script to demonstrate how to read/write mass budget ASCII files
# The script will:
# 1) Read in saved budget data from example file
# 2) Plot the data to demonstrate that the budget balances
# 3) Write back out to ascii as a deomnstration
#
# Ann Keen & Ed Blockley, Feb 2019
#--------------------------------------------------------------------
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
# Read in the saved data and put into arrrays
#--------------------------------------------
# define input ascii data file
#indatafile='NCAR_CESM2f09g17_HIST_001_ice.txt'
indatafile='NCAR_CESM2f09g17_BL99_001_ice.txt'
#indatafile='NCAR_CESM2f09g17_MUSHY_001_ice.txt'
# how many lines to skip in the header?
nskip=4 # default=4
data = np.genfromtxt(indatafile, skip_header=nskip)
# uncomment for diagnostics info on data file array if required
#print type(data)
#print data.shape
# obtain length of dataset (no. of monthly values)
ndates=len(data[:,0])
# define arrays
years = np.empty([ndates],dtype='int')
months = np.empty([ndates],dtype='int')
icearea = np.empty([ndates],dtype='float')
icemass = np.empty([ndates],dtype='float')
massbudget = np.empty([ndates,9],dtype='float')
# populate arrays (dates, area & mnass)
years = data[:,0]
months = data[:,1]
icearea = data[:,2]
icemass = data[:,3]
# populate buudget array
massbudget[:,0] = data[:,4] # growthbot
massbudget[:,1] = data[:,5] # growthwat
massbudget[:,2] = data[:,6] # melttop
massbudget[:,3] = data[:,7] # meltbot
massbudget[:,4] = data[:,8] # lat
massbudget[:,5] = data[:,9] # si
massbudget[:,6] = data[:,10] # evapsubl
massbudget[:,7] = data[:,11] # dyn
massbudget[:,8] = data[:,12] # total
# Calculate scaled budget in units of Kg/month:
seconds_in_month = 60*60*24*30
massbudgetmonthly = massbudget * seconds_in_month
# ---- Plotting colours etc ----------
lineColours=['red', # congel/sidmassgrowthbot
'magenta', # frazil/sidmassgrowthwat
'blue', # meltt/sidmassmelttop
'lime', # meltb/sidmassmeltbot
'cyan', # meltl/sidmasslat
'orange', # snowice/sidmasssi
'olive', # evap_ai/sidmassevalsubl
'darkgrey', # dvidtd/sidmassdyn
'black'] # total
Var_labels = ['sidmassgrowthbot',
'sidmassgrowthwat',
'sidmassmelttop',
'sidmassmeltbot',
'sidmasslat',
'sidmasssi',
'sidmassevapsubl',
'sidmassdyn',
'total' ]
lineMarkers=["^", # triangle-up
"<", # triangle-left
"v", # triangle-down
"8", # octagon
"o", # circle
"D", # diamond
">", # triangle-right
"h", # hexagon
"s"] # square
# use font size=15 always
matplotlib.rcParams.update({'font.size':15})
# ----------- Plot seasonal cycle of budget terms for the first year of data ------
# Using the monthly scaled budgets
# define figure and axis
fig1 = plt.figure(figsize = (8,5)) # Landscape
ax1 = fig1.add_subplot(111)
ax1.set_title('Arctic sea ice mass budget')
ax1.set_ylabel('Mass flux (kg month$^{-1}$)')
ax1.set_xlabel('Month')
# plot budget terms
ax1.plot([0,13],[0.0,0.0],color="black")
for nvar,name in enumerate(Var_labels):
thisLine = ax1.plot(months[588:599],
massbudgetmonthly[588:599,nvar],
color=lineColours[nvar],
linestyle='-',
marker=lineMarkers[nvar],
label=name,
linewidth=1)
ax1.set_xlim([0, 13])
ax1.legend(loc="best", fontsize = 'x-small')
fig1.savefig('Budget_scycle_ice.png', dpi=300)
#plt.show()
# ------ Plots demonstrating the balance for the first year of data -------------------------
# Set up the dmass arrays
# we do this twice for the monthly values and the mid-point between each month
# this helps to account for the discrepancy between monthly-mean and instantaneous mass
mass_midmonths = np.empty([11],dtype=float)
dmass = np.empty([11],dtype=float)
dmass_midmonths = np.empty([10],dtype=float)
for month in range(0,11):
mass_midmonths[month] = 0.5*(icemass[month+1] + icemass[month])
dmass[month] = icemass[month+1] - icemass[month]
for month in range(0,10):
dmass_midmonths[month] = mass_midmonths[month+1] - mass_midmonths[month]
midmonths=months[588:599]+0.5
fig2 = plt.figure(figsize = (15,5)) # Landscape
# -------- Seasonal cycle of Actual Ice Mass -------------------------
ax2 = fig2.add_subplot(121) # (rows,columns,relative position)
ax2.set_title('Arctic ice mass (kg)')
ax2.set_ylabel('Mass (Kg)')
ax2.set_xlabel('Month')
ax2.set_xlim([0, 13])
ax2.plot(months[588:599],icemass[588:599],color='purple',marker=lineMarkers[6],label='mass')
ax2.plot(midmonths,mass_midmonths,color='olive',marker=lineMarkers[5],label='mass_midmonths')
ax2.legend(loc="best", fontsize = 'x-small')
#--------- Mass change from budget terms ------------------
ax3 = fig2.add_subplot(122) # (rows,columns,relative position)
ax3.set_xlim([0,13])
ax3.set_title('Arctic ice mass budget')
ax3.set_ylabel('Mass flux (kg month$^{-1}$)')
ax3.set_xlabel('Month')
ax3.plot(months[588:599],massbudgetmonthly[588:599,-1],color='black',marker=lineMarkers[7],label='total')
ax3.plot(midmonths,dmass,color='purple',marker=lineMarkers[6],label='dmass')
ax3.plot(months[1:11],dmass_midmonths,color='olive',marker=lineMarkers[6],label='dmass_midmonths')
ax3.plot([0,13],[0.0,0.0],color="black")
ax3.legend(loc="best", fontsize = 'x-small')
fig2.savefig('Budget_balance_ice.png', dpi=300)
#plt.show()
# --- Re-generate the data file --------------------------------
# Using original budget terms in units of Kg s-1:
# define demo ascii data file
outdatafile='demo_ice.txt'
# define ascii data strcutures/formats
title_format = "%1s %4s %6s %14s %12s %17s %17s %15s %15s %12s %12s %15s %12s %12s"
data_format = "%6i %6i %14.5e %12.5e %17.5e %17.5e %15.5e %15.5e %12.5e %12.5e %15.5e %12.5e %12.5e"
headers = ('#','Year','Month','Area (Km**2)', 'Mass (Kg)',
'sidmassgrowthbot',
'sidmassgrowthwat',
'sidmassmelttop',
'sidmassmeltbot',
'sidmasslat',
'sidmasssi',
'sidmassevapsubl',
'sidmassdyn',
'total')
# creat file and populate header
data_fileh = open(outdatafile,'w')
data_fileh.write('# Contact: Ann Keen ann.keen@metoffice.gov.uk')
data_fileh.write("\n")
data_fileh.write('# Corresponding HIST file: n/a')
data_fileh.write("\n")
data_fileh.write('# Components of the Arctic sea ice mass budget (Kg s-1):')
data_fileh.write("\n")
data_fileh.write(title_format % headers)
data_fileh.write("\n")
# write out mass budget for each month
ndates=len(years)
for index in range(ndates):
data_fileh.write(data_format % (years[index],
months[index],
icearea[index],
icemass[index],
massbudget[index,0],
massbudget[index,1],
massbudget[index,2],
massbudget[index,3],
massbudget[index,4],
massbudget[index,5],
massbudget[index,6],
massbudget[index,7],
massbudget[index,8]))
data_fileh.write("\n")
# close ascii file
data_fileh.close()