-
Notifications
You must be signed in to change notification settings - Fork 1
/
OBJ_Loader.h
1160 lines (1021 loc) · 38.3 KB
/
OBJ_Loader.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#ifndef RASTERIZERHOWTO_OBJ_LOADER_H
#define RASTERIZERHOWTO_OBJ_LOADER_H
#pragma once
#include <iostream>
#include <vector>
#include <string>
#include <fstream>
#include <math.h>
// Print progress to console while loading (large models)
#define OBJL_CONSOLE_OUTPUT
// Namespace: OBJL
//
// Description: The namespace that holds eveyrthing that
// is needed and used for the OBJ Model Loader
namespace objl
{
// Structure: Vector2
//
// Description: A 2D Vector that Holds Positional Data
struct Vector2
{
// Default Constructor
Vector2()
{
X = 0.0f;
Y = 0.0f;
}
// Variable Set Constructor
Vector2(float X_, float Y_)
{
X = X_;
Y = Y_;
}
// Bool Equals Operator Overload
bool operator==(const Vector2& other) const
{
return (this->X == other.X && this->Y == other.Y);
}
// Bool Not Equals Operator Overload
bool operator!=(const Vector2& other) const
{
return !(this->X == other.X && this->Y == other.Y);
}
// Addition Operator Overload
Vector2 operator+(const Vector2& right) const
{
return Vector2(this->X + right.X, this->Y + right.Y);
}
// Subtraction Operator Overload
Vector2 operator-(const Vector2& right) const
{
return Vector2(this->X - right.X, this->Y - right.Y);
}
// Float Multiplication Operator Overload
Vector2 operator*(const float& other) const
{
return Vector2(this->X *other, this->Y * other);
}
// Positional Variables
float X;
float Y;
};
// Structure: Vector3
//
// Description: A 3D Vector that Holds Positional Data
struct Vector3
{
// Default Constructor
Vector3()
{
X = 0.0f;
Y = 0.0f;
Z = 0.0f;
}
// Variable Set Constructor
Vector3(float X_, float Y_, float Z_)
{
X = X_;
Y = Y_;
Z = Z_;
}
// Bool Equals Operator Overload
bool operator==(const Vector3& other) const
{
return (this->X == other.X && this->Y == other.Y && this->Z == other.Z);
}
// Bool Not Equals Operator Overload
bool operator!=(const Vector3& other) const
{
return !(this->X == other.X && this->Y == other.Y && this->Z == other.Z);
}
// Addition Operator Overload
Vector3 operator+(const Vector3& right) const
{
return Vector3(this->X + right.X, this->Y + right.Y, this->Z + right.Z);
}
// Subtraction Operator Overload
Vector3 operator-(const Vector3& right) const
{
return Vector3(this->X - right.X, this->Y - right.Y, this->Z - right.Z);
}
// Float Multiplication Operator Overload
Vector3 operator*(const float& other) const
{
return Vector3(this->X * other, this->Y * other, this->Z * other);
}
// Float Division Operator Overload
Vector3 operator/(const float& other) const
{
return Vector3(this->X / other, this->Y / other, this->Z / other);
}
// Positional Variables
float X;
float Y;
float Z;
};
// Structure: Vertex
//
// Description: Model Vertex object that holds
// a Position, Normal, and Texture Coordinate
struct Vertex
{
// Position Vector
Vector3 Position;
// Normal Vector
Vector3 Normal;
// Texture Coordinate Vector
Vector2 TextureCoordinate;
};
struct Material
{
Material()
{
name;
Ns = 0.0f;
Ni = 0.0f;
d = 0.0f;
illum = 0;
}
// Material Name
std::string name;
// Ambient Color
Vector3 Ka;
// Diffuse Color
Vector3 Kd;
// Specular Color
Vector3 Ks;
// Specular Exponent
float Ns;
// Optical Density
float Ni;
// Dissolve
float d;
// Illumination
int illum;
// Ambient Texture Map
std::string map_Ka;
// Diffuse Texture Map
std::string map_Kd;
// Specular Texture Map
std::string map_Ks;
// Specular Hightlight Map
std::string map_Ns;
// Alpha Texture Map
std::string map_d;
// Bump Map
std::string map_bump;
};
// Structure: Mesh
//
// Description: A Simple Mesh Object that holds
// a name, a vertex list, and an index list
struct Mesh
{
// Default Constructor
Mesh()
{
}
// Variable Set Constructor
Mesh(std::vector<Vertex>& _Vertices, std::vector<unsigned int>& _Indices)
{
Vertices = _Vertices;
Indices = _Indices;
}
// Mesh Name
std::string MeshName;
// Vertex List
std::vector<Vertex> Vertices;
// Index List
std::vector<unsigned int> Indices;
// Material
Material MeshMaterial;
};
// Namespace: Math
//
// Description: The namespace that holds all of the math
// functions need for OBJL
namespace math
{
// Vector3 Cross Product
Vector3 CrossV3(const Vector3 a, const Vector3 b)
{
return Vector3(a.Y * b.Z - a.Z * b.Y,
a.Z * b.X - a.X * b.Z,
a.X * b.Y - a.Y * b.X);
}
// Vector3 Magnitude Calculation
float MagnitudeV3(const Vector3 in)
{
return (sqrtf(powf(in.X, 2) + powf(in.Y, 2) + powf(in.Z, 2)));
}
// Vector3 DotProduct
float DotV3(const Vector3 a, const Vector3 b)
{
return (a.X * b.X) + (a.Y * b.Y) + (a.Z * b.Z);
}
// Angle between 2 Vector3 Objects
float AngleBetweenV3(const Vector3 a, const Vector3 b)
{
float angle = DotV3(a, b);
angle /= (MagnitudeV3(a) * MagnitudeV3(b));
return angle = acosf(angle);
}
// Projection Calculation of a onto b
Vector3 ProjV3(const Vector3 a, const Vector3 b)
{
Vector3 bn = b / MagnitudeV3(b);
return bn * DotV3(a, bn);
}
}
// Namespace: Algorithm
//
// Description: The namespace that holds all of the
// Algorithms needed for OBJL
namespace algorithm
{
// Vector3 Multiplication Opertor Overload
Vector3 operator*(const float& left, const Vector3& right)
{
return Vector3(right.X * left, right.Y * left, right.Z * left);
}
// A test to see if P1 is on the same side as P2 of a line segment ab
bool SameSide(Vector3 p1, Vector3 p2, Vector3 a, Vector3 b)
{
Vector3 cp1 = math::CrossV3(b - a, p1 - a);
Vector3 cp2 = math::CrossV3(b - a, p2 - a);
if (math::DotV3(cp1, cp2) >= 0)
return true;
else
return false;
}
// Generate a cross produect normal for a triangle
Vector3 GenTriNormal(Vector3 t1, Vector3 t2, Vector3 t3)
{
Vector3 u = t2 - t1;
Vector3 v = t3 - t1;
Vector3 normal = math::CrossV3(u,v);
return normal;
}
// Check to see if a Vector3 Point is within a 3 Vector3 Triangle
bool inTriangle(Vector3 point, Vector3 tri1, Vector3 tri2, Vector3 tri3)
{
// Test to see if it is within an infinite prism that the triangle outlines.
bool within_tri_prisim = SameSide(point, tri1, tri2, tri3) && SameSide(point, tri2, tri1, tri3)
&& SameSide(point, tri3, tri1, tri2);
// If it isn't it will never be on the triangle
if (!within_tri_prisim)
return false;
// Calulate Triangle's Normal
Vector3 n = GenTriNormal(tri1, tri2, tri3);
// Project the point onto this normal
Vector3 proj = math::ProjV3(point, n);
// If the distance from the triangle to the point is 0
// it lies on the triangle
if (math::MagnitudeV3(proj) == 0)
return true;
else
return false;
}
// Split a String into a string array at a given token
inline void split(const std::string &in,
std::vector<std::string> &out,
std::string token)
{
out.clear();
std::string temp;
for (int i = 0; i < int(in.size()); i++)
{
std::string test = in.substr(i, token.size());
if (test == token)
{
if (!temp.empty())
{
out.push_back(temp);
temp.clear();
i += (int)token.size() - 1;
}
else
{
out.push_back("");
}
}
else if (i + token.size() >= in.size())
{
temp += in.substr(i, token.size());
out.push_back(temp);
break;
}
else
{
temp += in[i];
}
}
}
// Get tail of string after first token and possibly following spaces
inline std::string tail(const std::string &in)
{
size_t token_start = in.find_first_not_of(" \t");
size_t space_start = in.find_first_of(" \t", token_start);
size_t tail_start = in.find_first_not_of(" \t", space_start);
size_t tail_end = in.find_last_not_of(" \t");
if (tail_start != std::string::npos && tail_end != std::string::npos)
{
return in.substr(tail_start, tail_end - tail_start + 1);
}
else if (tail_start != std::string::npos)
{
return in.substr(tail_start);
}
return "";
}
// Get first token of string
inline std::string firstToken(const std::string &in)
{
if (!in.empty())
{
size_t token_start = in.find_first_not_of(" \t");
size_t token_end = in.find_first_of(" \t", token_start);
if (token_start != std::string::npos && token_end != std::string::npos)
{
return in.substr(token_start, token_end - token_start);
}
else if (token_start != std::string::npos)
{
return in.substr(token_start);
}
}
return "";
}
// Get element at given index position
template <class T>
inline const T & getElement(const std::vector<T> &elements, std::string &index)
{
int idx = std::stoi(index);
if (idx < 0)
idx = int(elements.size()) + idx;
else
idx--;
return elements[idx];
}
}
// Class: Loader
//
// Description: The OBJ Model Loader
class Loader
{
public:
// Default Constructor
Loader()
{
}
~Loader()
{
LoadedMeshes.clear();
}
// Load a file into the loader
//
// If file is loaded return true
//
// If the file is unable to be found
// or unable to be loaded return false
bool LoadFile(std::string Path)
{
// If the file is not an .obj file return false
if (Path.substr(Path.size() - 4, 4) != ".obj")
return false;
std::ifstream file(Path);
if (!file.is_open())
return false;
LoadedMeshes.clear();
LoadedVertices.clear();
LoadedIndices.clear();
std::vector<Vector3> Positions;
std::vector<Vector2> TCoords;
std::vector<Vector3> Normals;
std::vector<Vertex> Vertices;
std::vector<unsigned int> Indices;
std::vector<std::string> MeshMatNames;
bool listening = false;
std::string meshname;
Mesh tempMesh;
#ifdef OBJL_CONSOLE_OUTPUT
const unsigned int outputEveryNth = 1000;
unsigned int outputIndicator = outputEveryNth;
#endif
std::string curline;
while (std::getline(file, curline))
{
#ifdef OBJL_CONSOLE_OUTPUT
if ((outputIndicator = ((outputIndicator + 1) % outputEveryNth)) == 1)
{
if (!meshname.empty())
{
std::cout
<< "\r- " << meshname
<< "\t| vertices > " << Positions.size()
<< "\t| texcoords > " << TCoords.size()
<< "\t| normals > " << Normals.size()
<< "\t| triangles > " << (Vertices.size() / 3)
<< (!MeshMatNames.empty() ? "\t| material: " + MeshMatNames.back() : "");
}
}
#endif
// Generate a Mesh Object or Prepare for an object to be created
if (algorithm::firstToken(curline) == "o" || algorithm::firstToken(curline) == "g" || curline[0] == 'g')
{
if (!listening)
{
listening = true;
if (algorithm::firstToken(curline) == "o" || algorithm::firstToken(curline) == "g")
{
meshname = algorithm::tail(curline);
}
else
{
meshname = "unnamed";
}
}
else
{
// Generate the mesh to put into the array
if (!Indices.empty() && !Vertices.empty())
{
// Create Mesh
tempMesh = Mesh(Vertices, Indices);
tempMesh.MeshName = meshname;
// Insert Mesh
LoadedMeshes.push_back(tempMesh);
// Cleanup
Vertices.clear();
Indices.clear();
meshname.clear();
meshname = algorithm::tail(curline);
}
else
{
if (algorithm::firstToken(curline) == "o" || algorithm::firstToken(curline) == "g")
{
meshname = algorithm::tail(curline);
}
else
{
meshname = "unnamed";
}
}
}
#ifdef OBJL_CONSOLE_OUTPUT
std::cout << std::endl;
outputIndicator = 0;
#endif
}
// Generate a Vertex Position
if (algorithm::firstToken(curline) == "v")
{
std::vector<std::string> spos;
Vector3 vpos;
algorithm::split(algorithm::tail(curline), spos, " ");
vpos.X = std::stof(spos[0]);
vpos.Y = std::stof(spos[1]);
vpos.Z = std::stof(spos[2]);
Positions.push_back(vpos);
}
// Generate a Vertex Texture Coordinate
if (algorithm::firstToken(curline) == "vt")
{
std::vector<std::string> stex;
Vector2 vtex;
algorithm::split(algorithm::tail(curline), stex, " ");
vtex.X = std::stof(stex[0]);
vtex.Y = std::stof(stex[1]);
TCoords.push_back(vtex);
}
// Generate a Vertex Normal;
if (algorithm::firstToken(curline) == "vn")
{
std::vector<std::string> snor;
Vector3 vnor;
algorithm::split(algorithm::tail(curline), snor, " ");
vnor.X = std::stof(snor[0]);
vnor.Y = std::stof(snor[1]);
vnor.Z = std::stof(snor[2]);
Normals.push_back(vnor);
}
// Generate a Face (vertices & indices)
if (algorithm::firstToken(curline) == "f")
{
// Generate the vertices
std::vector<Vertex> vVerts;
GenVerticesFromRawOBJ(vVerts, Positions, TCoords, Normals, curline);
// Add Vertices
for (int i = 0; i < int(vVerts.size()); i++)
{
Vertices.push_back(vVerts[i]);
LoadedVertices.push_back(vVerts[i]);
}
std::vector<unsigned int> iIndices;
VertexTriangluation(iIndices, vVerts);
// Add Indices
for (int i = 0; i < int(iIndices.size()); i++)
{
unsigned int indnum = (unsigned int)((Vertices.size()) - vVerts.size()) + iIndices[i];
Indices.push_back(indnum);
indnum = (unsigned int)((LoadedVertices.size()) - vVerts.size()) + iIndices[i];
LoadedIndices.push_back(indnum);
}
}
// Get Mesh Material Name
if (algorithm::firstToken(curline) == "usemtl")
{
MeshMatNames.push_back(algorithm::tail(curline));
// Create new Mesh, if Material changes within a group
if (!Indices.empty() && !Vertices.empty())
{
// Create Mesh
tempMesh = Mesh(Vertices, Indices);
tempMesh.MeshName = meshname;
int i = 2;
while(1) {
tempMesh.MeshName = meshname + "_" + std::to_string(i);
for (auto &m : LoadedMeshes)
if (m.MeshName == tempMesh.MeshName)
continue;
break;
}
// Insert Mesh
LoadedMeshes.push_back(tempMesh);
// Cleanup
Vertices.clear();
Indices.clear();
}
#ifdef OBJL_CONSOLE_OUTPUT
outputIndicator = 0;
#endif
}
// Load Materials
if (algorithm::firstToken(curline) == "mtllib")
{
// Generate LoadedMaterial
// Generate a path to the material file
std::vector<std::string> temp;
algorithm::split(Path, temp, "/");
std::string pathtomat = "";
if (temp.size() != 1)
{
for (int i = 0; i < temp.size() - 1; i++)
{
pathtomat += temp[i] + "/";
}
}
pathtomat += algorithm::tail(curline);
#ifdef OBJL_CONSOLE_OUTPUT
std::cout << std::endl << "- find materials in: " << pathtomat << std::endl;
#endif
// Load Materials
LoadMaterials(pathtomat);
}
}
#ifdef OBJL_CONSOLE_OUTPUT
std::cout << std::endl;
#endif
// Deal with last mesh
if (!Indices.empty() && !Vertices.empty())
{
// Create Mesh
tempMesh = Mesh(Vertices, Indices);
tempMesh.MeshName = meshname;
// Insert Mesh
LoadedMeshes.push_back(tempMesh);
}
file.close();
// Set Materials for each Mesh
for (int i = 0; i < MeshMatNames.size(); i++)
{
std::string matname = MeshMatNames[i];
// Find corresponding material name in loaded materials
// when found copy material variables into mesh material
for (int j = 0; j < LoadedMaterials.size(); j++)
{
if (LoadedMaterials[j].name == matname)
{
LoadedMeshes[i].MeshMaterial = LoadedMaterials[j];
break;
}
}
}
if (LoadedMeshes.empty() && LoadedVertices.empty() && LoadedIndices.empty())
{
return false;
}
else
{
return true;
}
}
// Loaded Mesh Objects
std::vector<Mesh> LoadedMeshes;
// Loaded Vertex Objects
std::vector<Vertex> LoadedVertices;
// Loaded Index Positions
std::vector<unsigned int> LoadedIndices;
// Loaded Material Objects
std::vector<Material> LoadedMaterials;
private:
// Generate vertices from a list of positions,
// tcoords, normals and a face line
void GenVerticesFromRawOBJ(std::vector<Vertex>& oVerts,
const std::vector<Vector3>& iPositions,
const std::vector<Vector2>& iTCoords,
const std::vector<Vector3>& iNormals,
std::string icurline)
{
std::vector<std::string> sface, svert;
Vertex vVert;
algorithm::split(algorithm::tail(icurline), sface, " ");
bool noNormal = false;
// For every given vertex do this
for (int i = 0; i < int(sface.size()); i++)
{
// See What type the vertex is.
int vtype;
algorithm::split(sface[i], svert, "/");
// Check for just position - v1
if (svert.size() == 1)
{
// Only position
vtype = 1;
}
// Check for position & texture - v1/vt1
if (svert.size() == 2)
{
// Position & Texture
vtype = 2;
}
// Check for Position, Texture and Normal - v1/vt1/vn1
// or if Position and Normal - v1//vn1
if (svert.size() == 3)
{
if (svert[1] != "")
{
// Position, Texture, and Normal
vtype = 4;
}
else
{
// Position & Normal
vtype = 3;
}
}
// Calculate and store the vertex
switch (vtype)
{
case 1: // P
{
vVert.Position = algorithm::getElement(iPositions, svert[0]);
vVert.TextureCoordinate = Vector2(0, 0);
noNormal = true;
oVerts.push_back(vVert);
break;
}
case 2: // P/T
{
vVert.Position = algorithm::getElement(iPositions, svert[0]);
vVert.TextureCoordinate = algorithm::getElement(iTCoords, svert[1]);
noNormal = true;
oVerts.push_back(vVert);
break;
}
case 3: // P//N
{
vVert.Position = algorithm::getElement(iPositions, svert[0]);
vVert.TextureCoordinate = Vector2(0, 0);
vVert.Normal = algorithm::getElement(iNormals, svert[2]);
oVerts.push_back(vVert);
break;
}
case 4: // P/T/N
{
vVert.Position = algorithm::getElement(iPositions, svert[0]);
vVert.TextureCoordinate = algorithm::getElement(iTCoords, svert[1]);
vVert.Normal = algorithm::getElement(iNormals, svert[2]);
oVerts.push_back(vVert);
break;
}
default:
{
break;
}
}
}
// take care of missing normals
// these may not be truly acurate but it is the
// best they get for not compiling a mesh with normals
if (noNormal)
{
Vector3 A = oVerts[0].Position - oVerts[1].Position;
Vector3 B = oVerts[2].Position - oVerts[1].Position;
Vector3 normal = math::CrossV3(A, B);
for (int i = 0; i < int(oVerts.size()); i++)
{
oVerts[i].Normal = normal;
}
}
}
// Triangulate a list of vertices into a face by printing
// inducies corresponding with triangles within it
void VertexTriangluation(std::vector<unsigned int>& oIndices,
const std::vector<Vertex>& iVerts)
{
// If there are 2 or less verts,
// no triangle can be created,
// so exit
if (iVerts.size() < 3)
{
return;
}
// If it is a triangle no need to calculate it
if (iVerts.size() == 3)
{
oIndices.push_back(0);
oIndices.push_back(1);
oIndices.push_back(2);
return;
}
// Create a list of vertices
std::vector<Vertex> tVerts = iVerts;
while (true)
{
// For every vertex
for (int i = 0; i < int(tVerts.size()); i++)
{
// pPrev = the previous vertex in the list
Vertex pPrev;
if (i == 0)
{
pPrev = tVerts[tVerts.size() - 1];
}
else
{
pPrev = tVerts[i - 1];
}
// pCur = the current vertex;
Vertex pCur = tVerts[i];
// pNext = the next vertex in the list
Vertex pNext;
if (i == tVerts.size() - 1)
{
pNext = tVerts[0];
}
else
{
pNext = tVerts[i + 1];
}
// Check to see if there are only 3 verts left
// if so this is the last triangle
if (tVerts.size() == 3)
{
// Create a triangle from pCur, pPrev, pNext
for (int j = 0; j < int(tVerts.size()); j++)
{
if (iVerts[j].Position == pCur.Position)
oIndices.push_back(j);
if (iVerts[j].Position == pPrev.Position)
oIndices.push_back(j);
if (iVerts[j].Position == pNext.Position)
oIndices.push_back(j);
}
tVerts.clear();
break;
}
if (tVerts.size() == 4)
{
// Create a triangle from pCur, pPrev, pNext
for (int j = 0; j < int(iVerts.size()); j++)
{
if (iVerts[j].Position == pCur.Position)
oIndices.push_back(j);
if (iVerts[j].Position == pPrev.Position)
oIndices.push_back(j);
if (iVerts[j].Position == pNext.Position)
oIndices.push_back(j);
}
Vector3 tempVec;
for (int j = 0; j < int(tVerts.size()); j++)
{
if (tVerts[j].Position != pCur.Position
&& tVerts[j].Position != pPrev.Position
&& tVerts[j].Position != pNext.Position)
{
tempVec = tVerts[j].Position;
break;
}
}
// Create a triangle from pCur, pPrev, pNext
for (int j = 0; j < int(iVerts.size()); j++)
{
if (iVerts[j].Position == pPrev.Position)
oIndices.push_back(j);
if (iVerts[j].Position == pNext.Position)
oIndices.push_back(j);
if (iVerts[j].Position == tempVec)
oIndices.push_back(j);
}
tVerts.clear();
break;
}
// If Vertex is not an interior vertex
float angle = math::AngleBetweenV3(pPrev.Position - pCur.Position, pNext.Position - pCur.Position) * (180 / 3.14159265359);
if (angle <= 0 && angle >= 180)
continue;
// If any vertices are within this triangle
bool inTri = false;
for (int j = 0; j < int(iVerts.size()); j++)
{
if (algorithm::inTriangle(iVerts[j].Position, pPrev.Position, pCur.Position, pNext.Position)
&& iVerts[j].Position != pPrev.Position
&& iVerts[j].Position != pCur.Position
&& iVerts[j].Position != pNext.Position)
{
inTri = true;
break;
}
}
if (inTri)
continue;
// Create a triangle from pCur, pPrev, pNext
for (int j = 0; j < int(iVerts.size()); j++)
{
if (iVerts[j].Position == pCur.Position)
oIndices.push_back(j);
if (iVerts[j].Position == pPrev.Position)
oIndices.push_back(j);
if (iVerts[j].Position == pNext.Position)
oIndices.push_back(j);
}
// Delete pCur from the list
for (int j = 0; j < int(tVerts.size()); j++)
{
if (tVerts[j].Position == pCur.Position)
{
tVerts.erase(tVerts.begin() + j);
break;
}
}
// reset i to the start
// -1 since loop will add 1 to it
i = -1;
}
// if no triangles were created
if (oIndices.size() == 0)
break;
// if no more vertices
if (tVerts.size() == 0)
break;
}
}
// Load Materials from .mtl file
bool LoadMaterials(std::string path)
{
// If the file is not a material file return false