forked from microsoft/knowledge-extraction-recipes-forms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
attribute_search.py
109 lines (83 loc) · 4.23 KB
/
attribute_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
#!/usr/bin/python
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
import os
import pandas as pd # type:ignore
from dotenv import load_dotenv
from .common import find_vendor_in_invoice_text
load_dotenv()
class Config:
"""
Read from .env file
"""
ISSUERS_FILE_PATH = os.environ.get("ISSUERS_FILE_PATH") # The attribute lookup file
GROUND_TRUTH_FILE_PATH = os.environ.get("GROUND_TRUTH_FILE_PATH") # Path to your GT file
OUTPUT_FILE = os.environ.get("OUTPUT_FILE") # The output file and path to write to
DEVIATIONS_FILE = os.environ.get("DEVIATIONS_FILE") # The output file and path to write to
OCR_FILE_PATH = os.environ.get("OCR_FILE_PATH") # The path to the OCR files
NUMBER_OF_ATTRIBUTES = os.environ.get("NUMBER_OF_ATTRIBUTES") # The number of attributes
# search for - this is used to determine the end score
def main():
"""
:param: See Config class which reads from .env file
:return: Generates cluster file
"""
# TODO - load your Ground Truth file as a dataframe if you need to evaluate the lookup accuracy
gt_dataframe = Config.GROUND_TRUTH_FILE_PATH
# TODO - load your attributes file here as a dataframe
dfAttributes = pd.read_csv(Config.ISSUERS_FILE_PATH)
print(f"Loaded attributes file")
# TODO - create a list for each of the attributes to be searched for. These are outputted in
# TODO a CSV file
lst_files_csv = []
lst_issuers_csv = []
lst_issuer_zips_csv = []
lst_issuer_numbers_csv = []
lst_ibans_csv = []
lst_score_csv = []
lst_vat_csv = []
not_found = 0
search_term_issuer_found = 0
for i, row in enumerate(gt_dataframe.itertuples(),
1): # Standard for loop using input dict{} of files
filepath = Config.OCR_FILE_PATH + str(row.FILENAME) + '.ocr.json'
# TODO - depending on what OCR you use, load it here
ocr_json = ['Your loaded OCR']
print(f"Processing {filepath} row {i} of {len(gt_dataframe)}")
# TODO - Read the ocr file - this example uses a dataframe
df_ocr = ['ocr.read()']
lst_files, lst_issuers, lst_issuer_zips, lst_ibans, \
lst_score, lst_issuer_numbers, lst_vat, _, lst_city, search_term_issuer_found = \
find_vendor_in_invoice_text(dfAttributes, df_ocr, str(row.FILENAME),
filepath, search_term_issuer_found)
# Now we rank and select the highest scoring vendor
matched = {}
# Zip by vendor number to avoid that vendors with same name are overwritten
lst_vendor_score = zip(lst_issuer_numbers, lst_score)
for vendor_number, score in lst_vendor_score:
matched[str(vendor_number)] = int(score)
# Let's get the best candidate
if len(matched) > 0:
best_match = max(matched.items(), key=lambda k: k[1])
best_match_result = best_match[0]
best_match_index = lst_issuer_numbers.index(best_match_result)
print('Best match with total match score', lst_issuer_numbers[best_match_index],
str(int(best_match[1] / int(Config.NUMBER_OF_ATTRIBUTES))) + '%')
lst_files_csv.append(lst_files[best_match_index])
lst_issuers_csv.append(lst_issuers[best_match_index])
lst_issuer_zips_csv.append(lst_issuer_zips[best_match_index])
lst_score_csv.append(lst_score[best_match_index])
lst_vat_csv.append(lst_vat[best_match_index])
lst_issuer_numbers_csv.append(lst_issuer_numbers[best_match_index])
# Spool in batches of 1000
if i % 1000 == 0:
data = {'issuer': lst_issuers,
'issuernumber': lst_issuer_numbers_csv,
'zip': lst_issuer_zips_csv, 'iban': lst_ibans_csv, 'vat': lst_vat_csv,
'score': lst_score_csv, 'file': lst_files_csv}
dfcluster = pd.DataFrame(data)
dfcluster.to_csv(Config.OUTPUT_FILE[:-4] + '_' + str(i) + '.csv', sep=',')
print(f"Done - wrote cluster file {Config.OUTPUT_FILE[:-4] + '_' + str(i) + '.csv'}")
print(f"Done: Found matches for {search_term_issuer_found} out of {len(gt_dataframe)}")
if __name__ == "__main__":
main()