diff --git a/project/graphlib/latest/graphlib.core.js b/project/graphlib/latest/graphlib.core.js index d9924a3..3e60a92 100644 --- a/project/graphlib/latest/graphlib.core.js +++ b/project/graphlib/latest/graphlib.core.js @@ -1390,7 +1390,7 @@ function read(json) { } },{"./graph":16}],19:[function(require,module,exports){ -module.exports = '2.2.2'; +module.exports = '2.2.3'; },{}]},{},[1])(1) }); diff --git a/project/graphlib/latest/graphlib.core.min.js b/project/graphlib/latest/graphlib.core.min.js index 89756ba..c638472 100644 --- a/project/graphlib/latest/graphlib.core.min.js +++ b/project/graphlib/latest/graphlib.core.min.js @@ -301,4 +301,4 @@ module.exports={Graph:require("./graph"),version:require("./version")}},{"./grap * // ['a', 'b'] * g2.edges() * // [ { v: 'a', w: 'b' } ] - */function read(json){var g=new Graph(json.options).setGraph(json.value);json.nodes.forEach(function(entry){g.setNode(entry.v,entry.value);if(entry.parent){g.setParent(entry.v,entry.parent)}});json.edges.forEach(function(entry){g.setEdge({v:entry.v,w:entry.w,name:entry.name},entry.value)});return g}},{"./graph":16}],19:[function(require,module,exports){module.exports="2.2.2"},{}]},{},[1])(1)}); + */function read(json){var g=new Graph(json.options).setGraph(json.value);json.nodes.forEach(function(entry){g.setNode(entry.v,entry.value);if(entry.parent){g.setParent(entry.v,entry.parent)}});json.edges.forEach(function(entry){g.setEdge({v:entry.v,w:entry.w,name:entry.name},entry.value)});return g}},{"./graph":16}],19:[function(require,module,exports){module.exports="2.2.3"},{}]},{},[1])(1)}); diff --git a/project/graphlib/latest/graphlib.js b/project/graphlib/latest/graphlib.js index d9924a3..3e60a92 100644 --- a/project/graphlib/latest/graphlib.js +++ b/project/graphlib/latest/graphlib.js @@ -1390,7 +1390,7 @@ function read(json) { } },{"./graph":16}],19:[function(require,module,exports){ -module.exports = '2.2.2'; +module.exports = '2.2.3'; },{}]},{},[1])(1) }); diff --git a/project/graphlib/latest/graphlib.min.js b/project/graphlib/latest/graphlib.min.js index 89756ba..c638472 100644 --- a/project/graphlib/latest/graphlib.min.js +++ b/project/graphlib/latest/graphlib.min.js @@ -301,4 +301,4 @@ module.exports={Graph:require("./graph"),version:require("./version")}},{"./grap * // ['a', 'b'] * g2.edges() * // [ { v: 'a', w: 'b' } ] - */function read(json){var g=new Graph(json.options).setGraph(json.value);json.nodes.forEach(function(entry){g.setNode(entry.v,entry.value);if(entry.parent){g.setParent(entry.v,entry.parent)}});json.edges.forEach(function(entry){g.setEdge({v:entry.v,w:entry.w,name:entry.name},entry.value)});return g}},{"./graph":16}],19:[function(require,module,exports){module.exports="2.2.2"},{}]},{},[1])(1)}); + */function read(json){var g=new Graph(json.options).setGraph(json.value);json.nodes.forEach(function(entry){g.setNode(entry.v,entry.value);if(entry.parent){g.setParent(entry.v,entry.parent)}});json.edges.forEach(function(entry){g.setEdge({v:entry.v,w:entry.w,name:entry.name},entry.value)});return g}},{"./graph":16}],19:[function(require,module,exports){module.exports="2.2.3"},{}]},{},[1])(1)}); diff --git a/project/graphlib/v2.2.3/graphlib.core.js b/project/graphlib/v2.2.3/graphlib.core.js new file mode 100644 index 0000000..3e60a92 --- /dev/null +++ b/project/graphlib/v2.2.3/graphlib.core.js @@ -0,0 +1,1396 @@ +(function(f){if(typeof exports==="object"&&typeof module!=="undefined"){module.exports=f()}else if(typeof define==="function"&&define.amd){define([],f)}else{var g;if(typeof window!=="undefined"){g=window}else if(typeof global!=="undefined"){g=global}else if(typeof self!=="undefined"){g=self}else{g=this}g.graphlib = f()}})(function(){var define,module,exports;return (function(){function r(e,n,t){function o(i,f){if(!n[i]){if(!e[i]){var c="function"==typeof require&&require;if(!f&&c)return c(i,!0);if(u)return u(i,!0);var a=new Error("Cannot find module '"+i+"'");throw a.code="MODULE_NOT_FOUND",a}var p=n[i]={exports:{}};e[i][0].call(p.exports,function(r){var n=e[i][1][r];return o(n||r)},p,p.exports,r,e,n,t)}return n[i].exports}for(var u="function"==typeof require&&require,i=0;i g.successors(v) : v => g.neighbors(v); + var orderFunc = order === "post" ? postOrderDfs : preOrderDfs; + + var acc = []; + var visited = {}; + vs.forEach(v => { + if (!g.hasNode(v)) { + throw new Error("Graph does not have node: " + v); + } + + orderFunc(v, navigation, visited, acc); + }); + + return acc; +} + +function postOrderDfs(v, navigation, visited, acc) { + var stack = [[v, false]]; + while (stack.length > 0) { + var curr = stack.pop(); + if (curr[1]) { + acc.push(curr[0]); + } else { + if (!visited.hasOwnProperty(curr[0])) { + visited[curr[0]] = true; + stack.push([curr[0], true]); + forEachRight(navigation(curr[0]), w => stack.push([w, false])); + } + } + } +} + +function preOrderDfs(v, navigation, visited, acc) { + var stack = [v]; + while (stack.length > 0) { + var curr = stack.pop(); + if (!visited.hasOwnProperty(curr)) { + visited[curr] = true; + acc.push(curr); + forEachRight(navigation(curr), w => stack.push(w)); + } + } +} + +function forEachRight(array, iteratee) { + var length = array.length; + while (length--) { + iteratee(array[length], length, array); + } + + return array; +} + +},{}],4:[function(require,module,exports){ +var dijkstra = require("./dijkstra"); + +module.exports = dijkstraAll; + +function dijkstraAll(g, weightFunc, edgeFunc) { + return g.nodes().reduce(function(acc, v) { + acc[v] = dijkstra(g, v, weightFunc, edgeFunc); + return acc; + }, {}); +} + +},{"./dijkstra":5}],5:[function(require,module,exports){ +var PriorityQueue = require("../data/priority-queue"); + +module.exports = dijkstra; + +var DEFAULT_WEIGHT_FUNC = () => 1; + +function dijkstra(g, source, weightFn, edgeFn) { + return runDijkstra(g, String(source), + weightFn || DEFAULT_WEIGHT_FUNC, + edgeFn || function(v) { return g.outEdges(v); }); +} + +function runDijkstra(g, source, weightFn, edgeFn) { + var results = {}; + var pq = new PriorityQueue(); + var v, vEntry; + + var updateNeighbors = function(edge) { + var w = edge.v !== v ? edge.v : edge.w; + var wEntry = results[w]; + var weight = weightFn(edge); + var distance = vEntry.distance + weight; + + if (weight < 0) { + throw new Error("dijkstra does not allow negative edge weights. " + + "Bad edge: " + edge + " Weight: " + weight); + } + + if (distance < wEntry.distance) { + wEntry.distance = distance; + wEntry.predecessor = v; + pq.decrease(w, distance); + } + }; + + g.nodes().forEach(function(v) { + var distance = v === source ? 0 : Number.POSITIVE_INFINITY; + results[v] = { distance: distance }; + pq.add(v, distance); + }); + + while (pq.size() > 0) { + v = pq.removeMin(); + vEntry = results[v]; + if (vEntry.distance === Number.POSITIVE_INFINITY) { + break; + } + + edgeFn(v).forEach(updateNeighbors); + } + + return results; +} + +},{"../data/priority-queue":15}],6:[function(require,module,exports){ +var tarjan = require("./tarjan"); + +module.exports = findCycles; + +function findCycles(g) { + return tarjan(g).filter(function(cmpt) { + return cmpt.length > 1 || (cmpt.length === 1 && g.hasEdge(cmpt[0], cmpt[0])); + }); +} + +},{"./tarjan":13}],7:[function(require,module,exports){ +module.exports = floydWarshall; + +var DEFAULT_WEIGHT_FUNC = () => 1; + +function floydWarshall(g, weightFn, edgeFn) { + return runFloydWarshall(g, + weightFn || DEFAULT_WEIGHT_FUNC, + edgeFn || function(v) { return g.outEdges(v); }); +} + +function runFloydWarshall(g, weightFn, edgeFn) { + var results = {}; + var nodes = g.nodes(); + + nodes.forEach(function(v) { + results[v] = {}; + results[v][v] = { distance: 0 }; + nodes.forEach(function(w) { + if (v !== w) { + results[v][w] = { distance: Number.POSITIVE_INFINITY }; + } + }); + edgeFn(v).forEach(function(edge) { + var w = edge.v === v ? edge.w : edge.v; + var d = weightFn(edge); + results[v][w] = { distance: d, predecessor: v }; + }); + }); + + nodes.forEach(function(k) { + var rowK = results[k]; + nodes.forEach(function(i) { + var rowI = results[i]; + nodes.forEach(function(j) { + var ik = rowI[k]; + var kj = rowK[j]; + var ij = rowI[j]; + var altDistance = ik.distance + kj.distance; + if (altDistance < ij.distance) { + ij.distance = altDistance; + ij.predecessor = kj.predecessor; + } + }); + }); + }); + + return results; +} + +},{}],8:[function(require,module,exports){ +module.exports = { + components: require("./components"), + dijkstra: require("./dijkstra"), + dijkstraAll: require("./dijkstra-all"), + findCycles: require("./find-cycles"), + floydWarshall: require("./floyd-warshall"), + isAcyclic: require("./is-acyclic"), + postorder: require("./postorder"), + preorder: require("./preorder"), + prim: require("./prim"), + tarjan: require("./tarjan"), + topsort: require("./topsort") +}; + +},{"./components":2,"./dijkstra":5,"./dijkstra-all":4,"./find-cycles":6,"./floyd-warshall":7,"./is-acyclic":9,"./postorder":10,"./preorder":11,"./prim":12,"./tarjan":13,"./topsort":14}],9:[function(require,module,exports){ +var topsort = require("./topsort"); + +module.exports = isAcyclic; + +function isAcyclic(g) { + try { + topsort(g); + } catch (e) { + if (e instanceof topsort.CycleException) { + return false; + } + throw e; + } + return true; +} + +},{"./topsort":14}],10:[function(require,module,exports){ +var dfs = require("./dfs"); + +module.exports = postorder; + +function postorder(g, vs) { + return dfs(g, vs, "post"); +} + +},{"./dfs":3}],11:[function(require,module,exports){ +var dfs = require("./dfs"); + +module.exports = preorder; + +function preorder(g, vs) { + return dfs(g, vs, "pre"); +} + +},{"./dfs":3}],12:[function(require,module,exports){ +var Graph = require("../graph"); +var PriorityQueue = require("../data/priority-queue"); + +module.exports = prim; + +function prim(g, weightFunc) { + var result = new Graph(); + var parents = {}; + var pq = new PriorityQueue(); + var v; + + function updateNeighbors(edge) { + var w = edge.v === v ? edge.w : edge.v; + var pri = pq.priority(w); + if (pri !== undefined) { + var edgeWeight = weightFunc(edge); + if (edgeWeight < pri) { + parents[w] = v; + pq.decrease(w, edgeWeight); + } + } + } + + if (g.nodeCount() === 0) { + return result; + } + + g.nodes().forEach(function(v) { + pq.add(v, Number.POSITIVE_INFINITY); + result.setNode(v); + }); + + // Start from an arbitrary node + pq.decrease(g.nodes()[0], 0); + + var init = false; + while (pq.size() > 0) { + v = pq.removeMin(); + if (parents.hasOwnProperty(v)) { + result.setEdge(v, parents[v]); + } else if (init) { + throw new Error("Input graph is not connected: " + g); + } else { + init = true; + } + + g.nodeEdges(v).forEach(updateNeighbors); + } + + return result; +} + +},{"../data/priority-queue":15,"../graph":16}],13:[function(require,module,exports){ +module.exports = tarjan; + +function tarjan(g) { + var index = 0; + var stack = []; + var visited = {}; // node id -> { onStack, lowlink, index } + var results = []; + + function dfs(v) { + var entry = visited[v] = { + onStack: true, + lowlink: index, + index: index++ + }; + stack.push(v); + + g.successors(v).forEach(function(w) { + if (!visited.hasOwnProperty(w)) { + dfs(w); + entry.lowlink = Math.min(entry.lowlink, visited[w].lowlink); + } else if (visited[w].onStack) { + entry.lowlink = Math.min(entry.lowlink, visited[w].index); + } + }); + + if (entry.lowlink === entry.index) { + var cmpt = []; + var w; + do { + w = stack.pop(); + visited[w].onStack = false; + cmpt.push(w); + } while (v !== w); + results.push(cmpt); + } + } + + g.nodes().forEach(function(v) { + if (!visited.hasOwnProperty(v)) { + dfs(v); + } + }); + + return results; +} + +},{}],14:[function(require,module,exports){ +function topsort(g) { + var visited = {}; + var stack = {}; + var results = []; + + function visit(node) { + if (stack.hasOwnProperty(node)) { + throw new CycleException(); + } + + if (!visited.hasOwnProperty(node)) { + stack[node] = true; + visited[node] = true; + g.predecessors(node).forEach(visit); + delete stack[node]; + results.push(node); + } + } + + g.sinks().forEach(visit); + + if (Object.keys(visited).length !== g.nodeCount()) { + throw new CycleException(); + } + + return results; +} + +class CycleException extends Error { + constructor() { + super(...arguments); + } +} + +module.exports = topsort; +topsort.CycleException = CycleException; + +},{}],15:[function(require,module,exports){ +/** + * A min-priority queue data structure. This algorithm is derived from Cormen, + * et al., "Introduction to Algorithms". The basic idea of a min-priority + * queue is that you can efficiently (in O(1) time) get the smallest key in + * the queue. Adding and removing elements takes O(log n) time. A key can + * have its priority decreased in O(log n) time. + */ +class PriorityQueue { + _arr = []; + _keyIndices = {}; + + /** + * Returns the number of elements in the queue. Takes `O(1)` time. + */ + size() { + return this._arr.length; + } + + /** + * Returns the keys that are in the queue. Takes `O(n)` time. + */ + keys() { + return this._arr.map(function(x) { return x.key; }); + } + + /** + * Returns `true` if **key** is in the queue and `false` if not. + */ + has(key) { + return this._keyIndices.hasOwnProperty(key); + } + + /** + * Returns the priority for **key**. If **key** is not present in the queue + * then this function returns `undefined`. Takes `O(1)` time. + * + * @param {Object} key + */ + priority(key) { + var index = this._keyIndices[key]; + if (index !== undefined) { + return this._arr[index].priority; + } + } + + /** + * Returns the key for the minimum element in this queue. If the queue is + * empty this function throws an Error. Takes `O(1)` time. + */ + min() { + if (this.size() === 0) { + throw new Error("Queue underflow"); + } + return this._arr[0].key; + } + + /** + * Inserts a new key into the priority queue. If the key already exists in + * the queue this function returns `false`; otherwise it will return `true`. + * Takes `O(n)` time. + * + * @param {Object} key the key to add + * @param {Number} priority the initial priority for the key + */ + add(key, priority) { + var keyIndices = this._keyIndices; + key = String(key); + if (!keyIndices.hasOwnProperty(key)) { + var arr = this._arr; + var index = arr.length; + keyIndices[key] = index; + arr.push({key: key, priority: priority}); + this._decrease(index); + return true; + } + return false; + } + + /** + * Removes and returns the smallest key in the queue. Takes `O(log n)` time. + */ + removeMin() { + this._swap(0, this._arr.length - 1); + var min = this._arr.pop(); + delete this._keyIndices[min.key]; + this._heapify(0); + return min.key; + } + + /** + * Decreases the priority for **key** to **priority**. If the new priority is + * greater than the previous priority, this function will throw an Error. + * + * @param {Object} key the key for which to raise priority + * @param {Number} priority the new priority for the key + */ + decrease(key, priority) { + var index = this._keyIndices[key]; + if (priority > this._arr[index].priority) { + throw new Error("New priority is greater than current priority. " + + "Key: " + key + " Old: " + this._arr[index].priority + " New: " + priority); + } + this._arr[index].priority = priority; + this._decrease(index); + } + + _heapify(i) { + var arr = this._arr; + var l = 2 * i; + var r = l + 1; + var largest = i; + if (l < arr.length) { + largest = arr[l].priority < arr[largest].priority ? l : largest; + if (r < arr.length) { + largest = arr[r].priority < arr[largest].priority ? r : largest; + } + if (largest !== i) { + this._swap(i, largest); + this._heapify(largest); + } + } + } + + _decrease(index) { + var arr = this._arr; + var priority = arr[index].priority; + var parent; + while (index !== 0) { + parent = index >> 1; + if (arr[parent].priority < priority) { + break; + } + this._swap(index, parent); + index = parent; + } + } + + _swap(i, j) { + var arr = this._arr; + var keyIndices = this._keyIndices; + var origArrI = arr[i]; + var origArrJ = arr[j]; + arr[i] = origArrJ; + arr[j] = origArrI; + keyIndices[origArrJ.key] = i; + keyIndices[origArrI.key] = j; + } +} + +module.exports = PriorityQueue; + +},{}],16:[function(require,module,exports){ +"use strict"; + +var DEFAULT_EDGE_NAME = "\x00"; +var GRAPH_NODE = "\x00"; +var EDGE_KEY_DELIM = "\x01"; + +// Implementation notes: +// +// * Node id query functions should return string ids for the nodes +// * Edge id query functions should return an "edgeObj", edge object, that is +// composed of enough information to uniquely identify an edge: {v, w, name}. +// * Internally we use an "edgeId", a stringified form of the edgeObj, to +// reference edges. This is because we need a performant way to look these +// edges up and, object properties, which have string keys, are the closest +// we're going to get to a performant hashtable in JavaScript. + +class Graph { + _isDirected = true; + _isMultigraph = false; + _isCompound = false; + + // Label for the graph itself + _label; + + // Defaults to be set when creating a new node + _defaultNodeLabelFn = () => undefined; + + // Defaults to be set when creating a new edge + _defaultEdgeLabelFn = () => undefined; + + // v -> label + _nodes = {}; + + // v -> edgeObj + _in = {}; + + // u -> v -> Number + _preds = {}; + + // v -> edgeObj + _out = {}; + + // v -> w -> Number + _sucs = {}; + + // e -> edgeObj + _edgeObjs = {}; + + // e -> label + _edgeLabels = {}; + + /* Number of nodes in the graph. Should only be changed by the implementation. */ + _nodeCount = 0; + + /* Number of edges in the graph. Should only be changed by the implementation. */ + _edgeCount = 0; + + _parent; + + _children; + + constructor(opts) { + if (opts) { + this._isDirected = opts.hasOwnProperty("directed") ? opts.directed : true; + this._isMultigraph = opts.hasOwnProperty("multigraph") ? opts.multigraph : false; + this._isCompound = opts.hasOwnProperty("compound") ? opts.compound : false; + } + + if (this._isCompound) { + // v -> parent + this._parent = {}; + + // v -> children + this._children = {}; + this._children[GRAPH_NODE] = {}; + } + } + + /* === Graph functions ========= */ + + /** + * Whether graph was created with 'directed' flag set to true or not. + */ + isDirected() { + return this._isDirected; + } + + /** + * Whether graph was created with 'multigraph' flag set to true or not. + */ + isMultigraph() { + return this._isMultigraph; + } + + /** + * Whether graph was created with 'compound' flag set to true or not. + */ + isCompound() { + return this._isCompound; + } + + /** + * Sets the label of the graph. + */ + setGraph(label) { + this._label = label; + return this; + } + + /** + * Gets the graph label. + */ + graph() { + return this._label; + } + + + /* === Node functions ========== */ + + /** + * Sets the default node label. If newDefault is a function, it will be + * invoked ach time when setting a label for a node. Otherwise, this label + * will be assigned as default label in case if no label was specified while + * setting a node. + * Complexity: O(1). + */ + setDefaultNodeLabel(newDefault) { + this._defaultNodeLabelFn = newDefault; + if (typeof newDefault !== 'function') { + this._defaultNodeLabelFn = () => newDefault; + } + + return this; + } + + /** + * Gets the number of nodes in the graph. + * Complexity: O(1). + */ + nodeCount() { + return this._nodeCount; + } + + /** + * Gets all nodes of the graph. Note, the in case of compound graph subnodes are + * not included in list. + * Complexity: O(1). + */ + nodes() { + return Object.keys(this._nodes); + } + + /** + * Gets list of nodes without in-edges. + * Complexity: O(|V|). + */ + sources() { + var self = this; + return this.nodes().filter(v => Object.keys(self._in[v]).length === 0); + } + + /** + * Gets list of nodes without out-edges. + * Complexity: O(|V|). + */ + sinks() { + var self = this; + return this.nodes().filter(v => Object.keys(self._out[v]).length === 0); + } + + /** + * Invokes setNode method for each node in names list. + * Complexity: O(|names|). + */ + setNodes(vs, value) { + var args = arguments; + var self = this; + vs.forEach(function(v) { + if (args.length > 1) { + self.setNode(v, value); + } else { + self.setNode(v); + } + }); + return this; + } + + /** + * Creates or updates the value for the node v in the graph. If label is supplied + * it is set as the value for the node. If label is not supplied and the node was + * created by this call then the default node label will be assigned. + * Complexity: O(1). + */ + setNode(v, value) { + if (this._nodes.hasOwnProperty(v)) { + if (arguments.length > 1) { + this._nodes[v] = value; + } + return this; + } + + this._nodes[v] = arguments.length > 1 ? value : this._defaultNodeLabelFn(v); + if (this._isCompound) { + this._parent[v] = GRAPH_NODE; + this._children[v] = {}; + this._children[GRAPH_NODE][v] = true; + } + this._in[v] = {}; + this._preds[v] = {}; + this._out[v] = {}; + this._sucs[v] = {}; + ++this._nodeCount; + return this; + } + + /** + * Gets the label of node with specified name. + * Complexity: O(|V|). + */ + node(v) { + return this._nodes[v]; + } + + /** + * Detects whether graph has a node with specified name or not. + */ + hasNode(v) { + return this._nodes.hasOwnProperty(v); + } + + /** + * Remove the node with the name from the graph or do nothing if the node is not in + * the graph. If the node was removed this function also removes any incident + * edges. + * Complexity: O(1). + */ + removeNode(v) { + var self = this; + if (this._nodes.hasOwnProperty(v)) { + var removeEdge = e => self.removeEdge(self._edgeObjs[e]); + delete this._nodes[v]; + if (this._isCompound) { + this._removeFromParentsChildList(v); + delete this._parent[v]; + this.children(v).forEach(function(child) { + self.setParent(child); + }); + delete this._children[v]; + } + Object.keys(this._in[v]).forEach(removeEdge); + delete this._in[v]; + delete this._preds[v]; + Object.keys(this._out[v]).forEach(removeEdge); + delete this._out[v]; + delete this._sucs[v]; + --this._nodeCount; + } + return this; + } + + /** + * Sets node p as a parent for node v if it is defined, or removes the + * parent for v if p is undefined. Method throws an exception in case of + * invoking it in context of noncompound graph. + * Average-case complexity: O(1). + */ + setParent(v, parent) { + if (!this._isCompound) { + throw new Error("Cannot set parent in a non-compound graph"); + } + + if (parent === undefined) { + parent = GRAPH_NODE; + } else { + // Coerce parent to string + parent += ""; + for (var ancestor = parent; ancestor !== undefined; ancestor = this.parent(ancestor)) { + if (ancestor === v) { + throw new Error("Setting " + parent+ " as parent of " + v + + " would create a cycle"); + } + } + + this.setNode(parent); + } + + this.setNode(v); + this._removeFromParentsChildList(v); + this._parent[v] = parent; + this._children[parent][v] = true; + return this; + } + + _removeFromParentsChildList(v) { + delete this._children[this._parent[v]][v]; + } + + /** + * Gets parent node for node v. + * Complexity: O(1). + */ + parent(v) { + if (this._isCompound) { + var parent = this._parent[v]; + if (parent !== GRAPH_NODE) { + return parent; + } + } + } + + /** + * Gets list of direct children of node v. + * Complexity: O(1). + */ + children(v = GRAPH_NODE) { + if (this._isCompound) { + var children = this._children[v]; + if (children) { + return Object.keys(children); + } + } else if (v === GRAPH_NODE) { + return this.nodes(); + } else if (this.hasNode(v)) { + return []; + } + } + + /** + * Return all nodes that are predecessors of the specified node or undefined if node v is not in + * the graph. Behavior is undefined for undirected graphs - use neighbors instead. + * Complexity: O(|V|). + */ + predecessors(v) { + var predsV = this._preds[v]; + if (predsV) { + return Object.keys(predsV); + } + } + + /** + * Return all nodes that are successors of the specified node or undefined if node v is not in + * the graph. Behavior is undefined for undirected graphs - use neighbors instead. + * Complexity: O(|V|). + */ + successors(v) { + var sucsV = this._sucs[v]; + if (sucsV) { + return Object.keys(sucsV); + } + } + + /** + * Return all nodes that are predecessors or successors of the specified node or undefined if + * node v is not in the graph. + * Complexity: O(|V|). + */ + neighbors(v) { + var preds = this.predecessors(v); + if (preds) { + const union = new Set(preds); + for (var succ of this.successors(v)) { + union.add(succ); + } + + return Array.from(union.values()); + } + } + + isLeaf(v) { + var neighbors; + if (this.isDirected()) { + neighbors = this.successors(v); + } else { + neighbors = this.neighbors(v); + } + return neighbors.length === 0; + } + + /** + * Creates new graph with nodes filtered via filter. Edges incident to rejected node + * are also removed. In case of compound graph, if parent is rejected by filter, + * than all its children are rejected too. + * Average-case complexity: O(|E|+|V|). + */ + filterNodes(filter) { + var copy = new this.constructor({ + directed: this._isDirected, + multigraph: this._isMultigraph, + compound: this._isCompound + }); + + copy.setGraph(this.graph()); + + var self = this; + Object.entries(this._nodes).forEach(function([v, value]) { + if (filter(v)) { + copy.setNode(v, value); + } + }); + + Object.values(this._edgeObjs).forEach(function(e) { + if (copy.hasNode(e.v) && copy.hasNode(e.w)) { + copy.setEdge(e, self.edge(e)); + } + }); + + var parents = {}; + function findParent(v) { + var parent = self.parent(v); + if (parent === undefined || copy.hasNode(parent)) { + parents[v] = parent; + return parent; + } else if (parent in parents) { + return parents[parent]; + } else { + return findParent(parent); + } + } + + if (this._isCompound) { + copy.nodes().forEach(v => copy.setParent(v, findParent(v))); + } + + return copy; + } + + /* === Edge functions ========== */ + + /** + * Sets the default edge label or factory function. This label will be + * assigned as default label in case if no label was specified while setting + * an edge or this function will be invoked each time when setting an edge + * with no label specified and returned value * will be used as a label for edge. + * Complexity: O(1). + */ + setDefaultEdgeLabel(newDefault) { + this._defaultEdgeLabelFn = newDefault; + if (typeof newDefault !== 'function') { + this._defaultEdgeLabelFn = () => newDefault; + } + + return this; + } + + /** + * Gets the number of edges in the graph. + * Complexity: O(1). + */ + edgeCount() { + return this._edgeCount; + } + + /** + * Gets edges of the graph. In case of compound graph subgraphs are not considered. + * Complexity: O(|E|). + */ + edges() { + return Object.values(this._edgeObjs); + } + + /** + * Establish an edges path over the nodes in nodes list. If some edge is already + * exists, it will update its label, otherwise it will create an edge between pair + * of nodes with label provided or default label if no label provided. + * Complexity: O(|nodes|). + */ + setPath(vs, value) { + var self = this; + var args = arguments; + vs.reduce(function(v, w) { + if (args.length > 1) { + self.setEdge(v, w, value); + } else { + self.setEdge(v, w); + } + return w; + }); + return this; + } + + /** + * Creates or updates the label for the edge (v, w) with the optionally supplied + * name. If label is supplied it is set as the value for the edge. If label is not + * supplied and the edge was created by this call then the default edge label will + * be assigned. The name parameter is only useful with multigraphs. + */ + setEdge() { + var v, w, name, value; + var valueSpecified = false; + var arg0 = arguments[0]; + + if (typeof arg0 === "object" && arg0 !== null && "v" in arg0) { + v = arg0.v; + w = arg0.w; + name = arg0.name; + if (arguments.length === 2) { + value = arguments[1]; + valueSpecified = true; + } + } else { + v = arg0; + w = arguments[1]; + name = arguments[3]; + if (arguments.length > 2) { + value = arguments[2]; + valueSpecified = true; + } + } + + v = "" + v; + w = "" + w; + if (name !== undefined) { + name = "" + name; + } + + var e = edgeArgsToId(this._isDirected, v, w, name); + if (this._edgeLabels.hasOwnProperty(e)) { + if (valueSpecified) { + this._edgeLabels[e] = value; + } + return this; + } + + if (name !== undefined && !this._isMultigraph) { + throw new Error("Cannot set a named edge when isMultigraph = false"); + } + + // It didn't exist, so we need to create it. + // First ensure the nodes exist. + this.setNode(v); + this.setNode(w); + + this._edgeLabels[e] = valueSpecified ? value : this._defaultEdgeLabelFn(v, w, name); + + var edgeObj = edgeArgsToObj(this._isDirected, v, w, name); + // Ensure we add undirected edges in a consistent way. + v = edgeObj.v; + w = edgeObj.w; + + Object.freeze(edgeObj); + this._edgeObjs[e] = edgeObj; + incrementOrInitEntry(this._preds[w], v); + incrementOrInitEntry(this._sucs[v], w); + this._in[w][e] = edgeObj; + this._out[v][e] = edgeObj; + this._edgeCount++; + return this; + } + + /** + * Gets the label for the specified edge. + * Complexity: O(1). + */ + edge(v, w, name) { + var e = (arguments.length === 1 + ? edgeObjToId(this._isDirected, arguments[0]) + : edgeArgsToId(this._isDirected, v, w, name)); + return this._edgeLabels[e]; + } + + /** + * Gets the label for the specified edge and converts it to an object. + * Complexity: O(1) + */ + edgeAsObj() { + const edge = this.edge(...arguments); + if (typeof edge !== "object") { + return {label: edge}; + } + + return edge; + } + + /** + * Detects whether the graph contains specified edge or not. No subgraphs are considered. + * Complexity: O(1). + */ + hasEdge(v, w, name) { + var e = (arguments.length === 1 + ? edgeObjToId(this._isDirected, arguments[0]) + : edgeArgsToId(this._isDirected, v, w, name)); + return this._edgeLabels.hasOwnProperty(e); + } + + /** + * Removes the specified edge from the graph. No subgraphs are considered. + * Complexity: O(1). + */ + removeEdge(v, w, name) { + var e = (arguments.length === 1 + ? edgeObjToId(this._isDirected, arguments[0]) + : edgeArgsToId(this._isDirected, v, w, name)); + var edge = this._edgeObjs[e]; + if (edge) { + v = edge.v; + w = edge.w; + delete this._edgeLabels[e]; + delete this._edgeObjs[e]; + decrementOrRemoveEntry(this._preds[w], v); + decrementOrRemoveEntry(this._sucs[v], w); + delete this._in[w][e]; + delete this._out[v][e]; + this._edgeCount--; + } + return this; + } + + /** + * Return all edges that point to the node v. Optionally filters those edges down to just those + * coming from node u. Behavior is undefined for undirected graphs - use nodeEdges instead. + * Complexity: O(|E|). + */ + inEdges(v, u) { + var inV = this._in[v]; + if (inV) { + var edges = Object.values(inV); + if (!u) { + return edges; + } + return edges.filter(edge => edge.v === u); + } + } + + /** + * Return all edges that are pointed at by node v. Optionally filters those edges down to just + * those point to w. Behavior is undefined for undirected graphs - use nodeEdges instead. + * Complexity: O(|E|). + */ + outEdges(v, w) { + var outV = this._out[v]; + if (outV) { + var edges = Object.values(outV); + if (!w) { + return edges; + } + return edges.filter(edge => edge.w === w); + } + } + + /** + * Returns all edges to or from node v regardless of direction. Optionally filters those edges + * down to just those between nodes v and w regardless of direction. + * Complexity: O(|E|). + */ + nodeEdges(v, w) { + var inEdges = this.inEdges(v, w); + if (inEdges) { + return inEdges.concat(this.outEdges(v, w)); + } + } +} + +function incrementOrInitEntry(map, k) { + if (map[k]) { + map[k]++; + } else { + map[k] = 1; + } +} + +function decrementOrRemoveEntry(map, k) { + if (!--map[k]) { delete map[k]; } +} + +function edgeArgsToId(isDirected, v_, w_, name) { + var v = "" + v_; + var w = "" + w_; + if (!isDirected && v > w) { + var tmp = v; + v = w; + w = tmp; + } + return v + EDGE_KEY_DELIM + w + EDGE_KEY_DELIM + + (name === undefined ? DEFAULT_EDGE_NAME : name); +} + +function edgeArgsToObj(isDirected, v_, w_, name) { + var v = "" + v_; + var w = "" + w_; + if (!isDirected && v > w) { + var tmp = v; + v = w; + w = tmp; + } + var edgeObj = { v: v, w: w }; + if (name) { + edgeObj.name = name; + } + return edgeObj; +} + +function edgeObjToId(isDirected, edgeObj) { + return edgeArgsToId(isDirected, edgeObj.v, edgeObj.w, edgeObj.name); +} + +module.exports = Graph; + +},{}],17:[function(require,module,exports){ +// Includes only the "core" of graphlib +module.exports = { + Graph: require("./graph"), + version: require("./version") +}; + +},{"./graph":16,"./version":19}],18:[function(require,module,exports){ +var Graph = require("./graph"); + +module.exports = { + write: write, + read: read +}; + +/** + * Creates a JSON representation of the graph that can be serialized to a string with + * JSON.stringify. The graph can later be restored using json.read. + */ +function write(g) { + var json = { + options: { + directed: g.isDirected(), + multigraph: g.isMultigraph(), + compound: g.isCompound() + }, + nodes: writeNodes(g), + edges: writeEdges(g) + }; + + if (g.graph() !== undefined) { + json.value = structuredClone(g.graph()); + } + return json; +} + +function writeNodes(g) { + return g.nodes().map(function(v) { + var nodeValue = g.node(v); + var parent = g.parent(v); + var node = { v: v }; + if (nodeValue !== undefined) { + node.value = nodeValue; + } + if (parent !== undefined) { + node.parent = parent; + } + return node; + }); +} + +function writeEdges(g) { + return g.edges().map(function(e) { + var edgeValue = g.edge(e); + var edge = { v: e.v, w: e.w }; + if (e.name !== undefined) { + edge.name = e.name; + } + if (edgeValue !== undefined) { + edge.value = edgeValue; + } + return edge; + }); +} + +/** + * Takes JSON as input and returns the graph representation. + * + * @example + * var g2 = graphlib.json.read(JSON.parse(str)); + * g2.nodes(); + * // ['a', 'b'] + * g2.edges() + * // [ { v: 'a', w: 'b' } ] + */ +function read(json) { + var g = new Graph(json.options).setGraph(json.value); + json.nodes.forEach(function(entry) { + g.setNode(entry.v, entry.value); + if (entry.parent) { + g.setParent(entry.v, entry.parent); + } + }); + json.edges.forEach(function(entry) { + g.setEdge({ v: entry.v, w: entry.w, name: entry.name }, entry.value); + }); + return g; +} + +},{"./graph":16}],19:[function(require,module,exports){ +module.exports = '2.2.3'; + +},{}]},{},[1])(1) +}); diff --git a/project/graphlib/v2.2.3/graphlib.core.min.js b/project/graphlib/v2.2.3/graphlib.core.min.js new file mode 100644 index 0000000..c638472 --- /dev/null +++ b/project/graphlib/v2.2.3/graphlib.core.min.js @@ -0,0 +1,304 @@ +(function(f){if(typeof exports==="object"&&typeof module!=="undefined"){module.exports=f()}else if(typeof define==="function"&&define.amd){define([],f)}else{var g;if(typeof window!=="undefined"){g=window}else if(typeof global!=="undefined"){g=global}else if(typeof self!=="undefined"){g=self}else{g=this}g.graphlib=f()}})(function(){var define,module,exports;return function(){function r(e,n,t){function o(i,f){if(!n[i]){if(!e[i]){var c="function"==typeof require&&require;if(!f&&c)return c(i,!0);if(u)return u(i,!0);var a=new Error("Cannot find module '"+i+"'");throw a.code="MODULE_NOT_FOUND",a}var p=n[i]={exports:{}};e[i][0].call(p.exports,function(r){var n=e[i][1][r];return o(n||r)},p,p.exports,r,e,n,t)}return n[i].exports}for(var u="function"==typeof require&&require,i=0;ig.successors(v):v=>g.neighbors(v);var orderFunc=order==="post"?postOrderDfs:preOrderDfs;var acc=[];var visited={};vs.forEach(v=>{if(!g.hasNode(v)){throw new Error("Graph does not have node: "+v)}orderFunc(v,navigation,visited,acc)});return acc}function postOrderDfs(v,navigation,visited,acc){var stack=[[v,false]];while(stack.length>0){var curr=stack.pop();if(curr[1]){acc.push(curr[0])}else{if(!visited.hasOwnProperty(curr[0])){visited[curr[0]]=true;stack.push([curr[0],true]);forEachRight(navigation(curr[0]),w=>stack.push([w,false]))}}}}function preOrderDfs(v,navigation,visited,acc){var stack=[v];while(stack.length>0){var curr=stack.pop();if(!visited.hasOwnProperty(curr)){visited[curr]=true;acc.push(curr);forEachRight(navigation(curr),w=>stack.push(w))}}}function forEachRight(array,iteratee){var length=array.length;while(length--){iteratee(array[length],length,array)}return array}},{}],4:[function(require,module,exports){var dijkstra=require("./dijkstra");module.exports=dijkstraAll;function dijkstraAll(g,weightFunc,edgeFunc){return g.nodes().reduce(function(acc,v){acc[v]=dijkstra(g,v,weightFunc,edgeFunc);return acc},{})}},{"./dijkstra":5}],5:[function(require,module,exports){var PriorityQueue=require("../data/priority-queue");module.exports=dijkstra;var DEFAULT_WEIGHT_FUNC=()=>1;function dijkstra(g,source,weightFn,edgeFn){return runDijkstra(g,String(source),weightFn||DEFAULT_WEIGHT_FUNC,edgeFn||function(v){return g.outEdges(v)})}function runDijkstra(g,source,weightFn,edgeFn){var results={};var pq=new PriorityQueue;var v,vEntry;var updateNeighbors=function(edge){var w=edge.v!==v?edge.v:edge.w;var wEntry=results[w];var weight=weightFn(edge);var distance=vEntry.distance+weight;if(weight<0){throw new Error("dijkstra does not allow negative edge weights. "+"Bad edge: "+edge+" Weight: "+weight)}if(distance0){v=pq.removeMin();vEntry=results[v];if(vEntry.distance===Number.POSITIVE_INFINITY){break}edgeFn(v).forEach(updateNeighbors)}return results}},{"../data/priority-queue":15}],6:[function(require,module,exports){var tarjan=require("./tarjan");module.exports=findCycles;function findCycles(g){return tarjan(g).filter(function(cmpt){return cmpt.length>1||cmpt.length===1&&g.hasEdge(cmpt[0],cmpt[0])})}},{"./tarjan":13}],7:[function(require,module,exports){module.exports=floydWarshall;var DEFAULT_WEIGHT_FUNC=()=>1;function floydWarshall(g,weightFn,edgeFn){return runFloydWarshall(g,weightFn||DEFAULT_WEIGHT_FUNC,edgeFn||function(v){return g.outEdges(v)})}function runFloydWarshall(g,weightFn,edgeFn){var results={};var nodes=g.nodes();nodes.forEach(function(v){results[v]={};results[v][v]={distance:0};nodes.forEach(function(w){if(v!==w){results[v][w]={distance:Number.POSITIVE_INFINITY}}});edgeFn(v).forEach(function(edge){var w=edge.v===v?edge.w:edge.v;var d=weightFn(edge);results[v][w]={distance:d,predecessor:v}})});nodes.forEach(function(k){var rowK=results[k];nodes.forEach(function(i){var rowI=results[i];nodes.forEach(function(j){var ik=rowI[k];var kj=rowK[j];var ij=rowI[j];var altDistance=ik.distance+kj.distance;if(altDistance0){v=pq.removeMin();if(parents.hasOwnProperty(v)){result.setEdge(v,parents[v])}else if(init){throw new Error("Input graph is not connected: "+g)}else{init=true}g.nodeEdges(v).forEach(updateNeighbors)}return result}},{"../data/priority-queue":15,"../graph":16}],13:[function(require,module,exports){module.exports=tarjan;function tarjan(g){var index=0;var stack=[];var visited={};// node id -> { onStack, lowlink, index } +var results=[];function dfs(v){var entry=visited[v]={onStack:true,lowlink:index,index:index++};stack.push(v);g.successors(v).forEach(function(w){if(!visited.hasOwnProperty(w)){dfs(w);entry.lowlink=Math.min(entry.lowlink,visited[w].lowlink)}else if(visited[w].onStack){entry.lowlink=Math.min(entry.lowlink,visited[w].index)}});if(entry.lowlink===entry.index){var cmpt=[];var w;do{w=stack.pop();visited[w].onStack=false;cmpt.push(w)}while(v!==w);results.push(cmpt)}}g.nodes().forEach(function(v){if(!visited.hasOwnProperty(v)){dfs(v)}});return results}},{}],14:[function(require,module,exports){function topsort(g){var visited={};var stack={};var results=[];function visit(node){if(stack.hasOwnProperty(node)){throw new CycleException}if(!visited.hasOwnProperty(node)){stack[node]=true;visited[node]=true;g.predecessors(node).forEach(visit);delete stack[node];results.push(node)}}g.sinks().forEach(visit);if(Object.keys(visited).length!==g.nodeCount()){throw new CycleException}return results}class CycleException extends Error{constructor(){super(...arguments)}}module.exports=topsort;topsort.CycleException=CycleException},{}],15:[function(require,module,exports){ +/** + * A min-priority queue data structure. This algorithm is derived from Cormen, + * et al., "Introduction to Algorithms". The basic idea of a min-priority + * queue is that you can efficiently (in O(1) time) get the smallest key in + * the queue. Adding and removing elements takes O(log n) time. A key can + * have its priority decreased in O(log n) time. + */ +class PriorityQueue{_arr=[];_keyIndices={}; +/** + * Returns the number of elements in the queue. Takes `O(1)` time. + */size(){return this._arr.length} +/** + * Returns the keys that are in the queue. Takes `O(n)` time. + */keys(){return this._arr.map(function(x){return x.key})} +/** + * Returns `true` if **key** is in the queue and `false` if not. + */has(key){return this._keyIndices.hasOwnProperty(key)} +/** + * Returns the priority for **key**. If **key** is not present in the queue + * then this function returns `undefined`. Takes `O(1)` time. + * + * @param {Object} key + */priority(key){var index=this._keyIndices[key];if(index!==undefined){return this._arr[index].priority}} +/** + * Returns the key for the minimum element in this queue. If the queue is + * empty this function throws an Error. Takes `O(1)` time. + */min(){if(this.size()===0){throw new Error("Queue underflow")}return this._arr[0].key} +/** + * Inserts a new key into the priority queue. If the key already exists in + * the queue this function returns `false`; otherwise it will return `true`. + * Takes `O(n)` time. + * + * @param {Object} key the key to add + * @param {Number} priority the initial priority for the key + */add(key,priority){var keyIndices=this._keyIndices;key=String(key);if(!keyIndices.hasOwnProperty(key)){var arr=this._arr;var index=arr.length;keyIndices[key]=index;arr.push({key:key,priority:priority});this._decrease(index);return true}return false} +/** + * Removes and returns the smallest key in the queue. Takes `O(log n)` time. + */removeMin(){this._swap(0,this._arr.length-1);var min=this._arr.pop();delete this._keyIndices[min.key];this._heapify(0);return min.key} +/** + * Decreases the priority for **key** to **priority**. If the new priority is + * greater than the previous priority, this function will throw an Error. + * + * @param {Object} key the key for which to raise priority + * @param {Number} priority the new priority for the key + */decrease(key,priority){var index=this._keyIndices[key];if(priority>this._arr[index].priority){throw new Error("New priority is greater than current priority. "+"Key: "+key+" Old: "+this._arr[index].priority+" New: "+priority)}this._arr[index].priority=priority;this._decrease(index)}_heapify(i){var arr=this._arr;var l=2*i;var r=l+1;var largest=i;if(l>1;if(arr[parent].priorityundefined; +// Defaults to be set when creating a new edge +_defaultEdgeLabelFn=()=>undefined; +// v -> label +_nodes={}; +// v -> edgeObj +_in={}; +// u -> v -> Number +_preds={}; +// v -> edgeObj +_out={}; +// v -> w -> Number +_sucs={}; +// e -> edgeObj +_edgeObjs={}; +// e -> label +_edgeLabels={}; +/* Number of nodes in the graph. Should only be changed by the implementation. */_nodeCount=0; +/* Number of edges in the graph. Should only be changed by the implementation. */_edgeCount=0;_parent;_children;constructor(opts){if(opts){this._isDirected=opts.hasOwnProperty("directed")?opts.directed:true;this._isMultigraph=opts.hasOwnProperty("multigraph")?opts.multigraph:false;this._isCompound=opts.hasOwnProperty("compound")?opts.compound:false}if(this._isCompound){ +// v -> parent +this._parent={}; +// v -> children +this._children={};this._children[GRAPH_NODE]={}}} +/* === Graph functions ========= */ +/** + * Whether graph was created with 'directed' flag set to true or not. + */isDirected(){return this._isDirected} +/** + * Whether graph was created with 'multigraph' flag set to true or not. + */isMultigraph(){return this._isMultigraph} +/** + * Whether graph was created with 'compound' flag set to true or not. + */isCompound(){return this._isCompound} +/** + * Sets the label of the graph. + */setGraph(label){this._label=label;return this} +/** + * Gets the graph label. + */graph(){return this._label} +/* === Node functions ========== */ +/** + * Sets the default node label. If newDefault is a function, it will be + * invoked ach time when setting a label for a node. Otherwise, this label + * will be assigned as default label in case if no label was specified while + * setting a node. + * Complexity: O(1). + */setDefaultNodeLabel(newDefault){this._defaultNodeLabelFn=newDefault;if(typeof newDefault!=="function"){this._defaultNodeLabelFn=()=>newDefault}return this} +/** + * Gets the number of nodes in the graph. + * Complexity: O(1). + */nodeCount(){return this._nodeCount} +/** + * Gets all nodes of the graph. Note, the in case of compound graph subnodes are + * not included in list. + * Complexity: O(1). + */nodes(){return Object.keys(this._nodes)} +/** + * Gets list of nodes without in-edges. + * Complexity: O(|V|). + */sources(){var self=this;return this.nodes().filter(v=>Object.keys(self._in[v]).length===0)} +/** + * Gets list of nodes without out-edges. + * Complexity: O(|V|). + */sinks(){var self=this;return this.nodes().filter(v=>Object.keys(self._out[v]).length===0)} +/** + * Invokes setNode method for each node in names list. + * Complexity: O(|names|). + */setNodes(vs,value){var args=arguments;var self=this;vs.forEach(function(v){if(args.length>1){self.setNode(v,value)}else{self.setNode(v)}});return this} +/** + * Creates or updates the value for the node v in the graph. If label is supplied + * it is set as the value for the node. If label is not supplied and the node was + * created by this call then the default node label will be assigned. + * Complexity: O(1). + */setNode(v,value){if(this._nodes.hasOwnProperty(v)){if(arguments.length>1){this._nodes[v]=value}return this}this._nodes[v]=arguments.length>1?value:this._defaultNodeLabelFn(v);if(this._isCompound){this._parent[v]=GRAPH_NODE;this._children[v]={};this._children[GRAPH_NODE][v]=true}this._in[v]={};this._preds[v]={};this._out[v]={};this._sucs[v]={};++this._nodeCount;return this} +/** + * Gets the label of node with specified name. + * Complexity: O(|V|). + */node(v){return this._nodes[v]} +/** + * Detects whether graph has a node with specified name or not. + */hasNode(v){return this._nodes.hasOwnProperty(v)} +/** + * Remove the node with the name from the graph or do nothing if the node is not in + * the graph. If the node was removed this function also removes any incident + * edges. + * Complexity: O(1). + */removeNode(v){var self=this;if(this._nodes.hasOwnProperty(v)){var removeEdge=e=>self.removeEdge(self._edgeObjs[e]);delete this._nodes[v];if(this._isCompound){this._removeFromParentsChildList(v);delete this._parent[v];this.children(v).forEach(function(child){self.setParent(child)});delete this._children[v]}Object.keys(this._in[v]).forEach(removeEdge);delete this._in[v];delete this._preds[v];Object.keys(this._out[v]).forEach(removeEdge);delete this._out[v];delete this._sucs[v];--this._nodeCount}return this} +/** + * Sets node p as a parent for node v if it is defined, or removes the + * parent for v if p is undefined. Method throws an exception in case of + * invoking it in context of noncompound graph. + * Average-case complexity: O(1). + */setParent(v,parent){if(!this._isCompound){throw new Error("Cannot set parent in a non-compound graph")}if(parent===undefined){parent=GRAPH_NODE}else{ +// Coerce parent to string +parent+="";for(var ancestor=parent;ancestor!==undefined;ancestor=this.parent(ancestor)){if(ancestor===v){throw new Error("Setting "+parent+" as parent of "+v+" would create a cycle")}}this.setNode(parent)}this.setNode(v);this._removeFromParentsChildList(v);this._parent[v]=parent;this._children[parent][v]=true;return this}_removeFromParentsChildList(v){delete this._children[this._parent[v]][v]} +/** + * Gets parent node for node v. + * Complexity: O(1). + */parent(v){if(this._isCompound){var parent=this._parent[v];if(parent!==GRAPH_NODE){return parent}}} +/** + * Gets list of direct children of node v. + * Complexity: O(1). + */children(v=GRAPH_NODE){if(this._isCompound){var children=this._children[v];if(children){return Object.keys(children)}}else if(v===GRAPH_NODE){return this.nodes()}else if(this.hasNode(v)){return[]}} +/** + * Return all nodes that are predecessors of the specified node or undefined if node v is not in + * the graph. Behavior is undefined for undirected graphs - use neighbors instead. + * Complexity: O(|V|). + */predecessors(v){var predsV=this._preds[v];if(predsV){return Object.keys(predsV)}} +/** + * Return all nodes that are successors of the specified node or undefined if node v is not in + * the graph. Behavior is undefined for undirected graphs - use neighbors instead. + * Complexity: O(|V|). + */successors(v){var sucsV=this._sucs[v];if(sucsV){return Object.keys(sucsV)}} +/** + * Return all nodes that are predecessors or successors of the specified node or undefined if + * node v is not in the graph. + * Complexity: O(|V|). + */neighbors(v){var preds=this.predecessors(v);if(preds){const union=new Set(preds);for(var succ of this.successors(v)){union.add(succ)}return Array.from(union.values())}}isLeaf(v){var neighbors;if(this.isDirected()){neighbors=this.successors(v)}else{neighbors=this.neighbors(v)}return neighbors.length===0} +/** + * Creates new graph with nodes filtered via filter. Edges incident to rejected node + * are also removed. In case of compound graph, if parent is rejected by filter, + * than all its children are rejected too. + * Average-case complexity: O(|E|+|V|). + */filterNodes(filter){var copy=new this.constructor({directed:this._isDirected,multigraph:this._isMultigraph,compound:this._isCompound});copy.setGraph(this.graph());var self=this;Object.entries(this._nodes).forEach(function([v,value]){if(filter(v)){copy.setNode(v,value)}});Object.values(this._edgeObjs).forEach(function(e){if(copy.hasNode(e.v)&©.hasNode(e.w)){copy.setEdge(e,self.edge(e))}});var parents={};function findParent(v){var parent=self.parent(v);if(parent===undefined||copy.hasNode(parent)){parents[v]=parent;return parent}else if(parent in parents){return parents[parent]}else{return findParent(parent)}}if(this._isCompound){copy.nodes().forEach(v=>copy.setParent(v,findParent(v)))}return copy} +/* === Edge functions ========== */ +/** + * Sets the default edge label or factory function. This label will be + * assigned as default label in case if no label was specified while setting + * an edge or this function will be invoked each time when setting an edge + * with no label specified and returned value * will be used as a label for edge. + * Complexity: O(1). + */setDefaultEdgeLabel(newDefault){this._defaultEdgeLabelFn=newDefault;if(typeof newDefault!=="function"){this._defaultEdgeLabelFn=()=>newDefault}return this} +/** + * Gets the number of edges in the graph. + * Complexity: O(1). + */edgeCount(){return this._edgeCount} +/** + * Gets edges of the graph. In case of compound graph subgraphs are not considered. + * Complexity: O(|E|). + */edges(){return Object.values(this._edgeObjs)} +/** + * Establish an edges path over the nodes in nodes list. If some edge is already + * exists, it will update its label, otherwise it will create an edge between pair + * of nodes with label provided or default label if no label provided. + * Complexity: O(|nodes|). + */setPath(vs,value){var self=this;var args=arguments;vs.reduce(function(v,w){if(args.length>1){self.setEdge(v,w,value)}else{self.setEdge(v,w)}return w});return this} +/** + * Creates or updates the label for the edge (v, w) with the optionally supplied + * name. If label is supplied it is set as the value for the edge. If label is not + * supplied and the edge was created by this call then the default edge label will + * be assigned. The name parameter is only useful with multigraphs. + */setEdge(){var v,w,name,value;var valueSpecified=false;var arg0=arguments[0];if(typeof arg0==="object"&&arg0!==null&&"v"in arg0){v=arg0.v;w=arg0.w;name=arg0.name;if(arguments.length===2){value=arguments[1];valueSpecified=true}}else{v=arg0;w=arguments[1];name=arguments[3];if(arguments.length>2){value=arguments[2];valueSpecified=true}}v=""+v;w=""+w;if(name!==undefined){name=""+name}var e=edgeArgsToId(this._isDirected,v,w,name);if(this._edgeLabels.hasOwnProperty(e)){if(valueSpecified){this._edgeLabels[e]=value}return this}if(name!==undefined&&!this._isMultigraph){throw new Error("Cannot set a named edge when isMultigraph = false")} +// It didn't exist, so we need to create it. +// First ensure the nodes exist. +this.setNode(v);this.setNode(w);this._edgeLabels[e]=valueSpecified?value:this._defaultEdgeLabelFn(v,w,name);var edgeObj=edgeArgsToObj(this._isDirected,v,w,name); +// Ensure we add undirected edges in a consistent way. +v=edgeObj.v;w=edgeObj.w;Object.freeze(edgeObj);this._edgeObjs[e]=edgeObj;incrementOrInitEntry(this._preds[w],v);incrementOrInitEntry(this._sucs[v],w);this._in[w][e]=edgeObj;this._out[v][e]=edgeObj;this._edgeCount++;return this} +/** + * Gets the label for the specified edge. + * Complexity: O(1). + */edge(v,w,name){var e=arguments.length===1?edgeObjToId(this._isDirected,arguments[0]):edgeArgsToId(this._isDirected,v,w,name);return this._edgeLabels[e]} +/** + * Gets the label for the specified edge and converts it to an object. + * Complexity: O(1) + */edgeAsObj(){const edge=this.edge(...arguments);if(typeof edge!=="object"){return{label:edge}}return edge} +/** + * Detects whether the graph contains specified edge or not. No subgraphs are considered. + * Complexity: O(1). + */hasEdge(v,w,name){var e=arguments.length===1?edgeObjToId(this._isDirected,arguments[0]):edgeArgsToId(this._isDirected,v,w,name);return this._edgeLabels.hasOwnProperty(e)} +/** + * Removes the specified edge from the graph. No subgraphs are considered. + * Complexity: O(1). + */removeEdge(v,w,name){var e=arguments.length===1?edgeObjToId(this._isDirected,arguments[0]):edgeArgsToId(this._isDirected,v,w,name);var edge=this._edgeObjs[e];if(edge){v=edge.v;w=edge.w;delete this._edgeLabels[e];delete this._edgeObjs[e];decrementOrRemoveEntry(this._preds[w],v);decrementOrRemoveEntry(this._sucs[v],w);delete this._in[w][e];delete this._out[v][e];this._edgeCount--}return this} +/** + * Return all edges that point to the node v. Optionally filters those edges down to just those + * coming from node u. Behavior is undefined for undirected graphs - use nodeEdges instead. + * Complexity: O(|E|). + */inEdges(v,u){var inV=this._in[v];if(inV){var edges=Object.values(inV);if(!u){return edges}return edges.filter(edge=>edge.v===u)}} +/** + * Return all edges that are pointed at by node v. Optionally filters those edges down to just + * those point to w. Behavior is undefined for undirected graphs - use nodeEdges instead. + * Complexity: O(|E|). + */outEdges(v,w){var outV=this._out[v];if(outV){var edges=Object.values(outV);if(!w){return edges}return edges.filter(edge=>edge.w===w)}} +/** + * Returns all edges to or from node v regardless of direction. Optionally filters those edges + * down to just those between nodes v and w regardless of direction. + * Complexity: O(|E|). + */nodeEdges(v,w){var inEdges=this.inEdges(v,w);if(inEdges){return inEdges.concat(this.outEdges(v,w))}}}function incrementOrInitEntry(map,k){if(map[k]){map[k]++}else{map[k]=1}}function decrementOrRemoveEntry(map,k){if(!--map[k]){delete map[k]}}function edgeArgsToId(isDirected,v_,w_,name){var v=""+v_;var w=""+w_;if(!isDirected&&v>w){var tmp=v;v=w;w=tmp}return v+EDGE_KEY_DELIM+w+EDGE_KEY_DELIM+(name===undefined?DEFAULT_EDGE_NAME:name)}function edgeArgsToObj(isDirected,v_,w_,name){var v=""+v_;var w=""+w_;if(!isDirected&&v>w){var tmp=v;v=w;w=tmp}var edgeObj={v:v,w:w};if(name){edgeObj.name=name}return edgeObj}function edgeObjToId(isDirected,edgeObj){return edgeArgsToId(isDirected,edgeObj.v,edgeObj.w,edgeObj.name)}module.exports=Graph},{}],17:[function(require,module,exports){ +// Includes only the "core" of graphlib +module.exports={Graph:require("./graph"),version:require("./version")}},{"./graph":16,"./version":19}],18:[function(require,module,exports){var Graph=require("./graph");module.exports={write:write,read:read}; +/** + * Creates a JSON representation of the graph that can be serialized to a string with + * JSON.stringify. The graph can later be restored using json.read. + */function write(g){var json={options:{directed:g.isDirected(),multigraph:g.isMultigraph(),compound:g.isCompound()},nodes:writeNodes(g),edges:writeEdges(g)};if(g.graph()!==undefined){json.value=structuredClone(g.graph())}return json}function writeNodes(g){return g.nodes().map(function(v){var nodeValue=g.node(v);var parent=g.parent(v);var node={v:v};if(nodeValue!==undefined){node.value=nodeValue}if(parent!==undefined){node.parent=parent}return node})}function writeEdges(g){return g.edges().map(function(e){var edgeValue=g.edge(e);var edge={v:e.v,w:e.w};if(e.name!==undefined){edge.name=e.name}if(edgeValue!==undefined){edge.value=edgeValue}return edge})} +/** + * Takes JSON as input and returns the graph representation. + * + * @example + * var g2 = graphlib.json.read(JSON.parse(str)); + * g2.nodes(); + * // ['a', 'b'] + * g2.edges() + * // [ { v: 'a', w: 'b' } ] + */function read(json){var g=new Graph(json.options).setGraph(json.value);json.nodes.forEach(function(entry){g.setNode(entry.v,entry.value);if(entry.parent){g.setParent(entry.v,entry.parent)}});json.edges.forEach(function(entry){g.setEdge({v:entry.v,w:entry.w,name:entry.name},entry.value)});return g}},{"./graph":16}],19:[function(require,module,exports){module.exports="2.2.3"},{}]},{},[1])(1)}); diff --git a/project/graphlib/v2.2.3/graphlib.js b/project/graphlib/v2.2.3/graphlib.js new file mode 100644 index 0000000..3e60a92 --- /dev/null +++ b/project/graphlib/v2.2.3/graphlib.js @@ -0,0 +1,1396 @@ +(function(f){if(typeof exports==="object"&&typeof module!=="undefined"){module.exports=f()}else if(typeof define==="function"&&define.amd){define([],f)}else{var g;if(typeof window!=="undefined"){g=window}else if(typeof global!=="undefined"){g=global}else if(typeof self!=="undefined"){g=self}else{g=this}g.graphlib = f()}})(function(){var define,module,exports;return (function(){function r(e,n,t){function o(i,f){if(!n[i]){if(!e[i]){var c="function"==typeof require&&require;if(!f&&c)return c(i,!0);if(u)return u(i,!0);var a=new Error("Cannot find module '"+i+"'");throw a.code="MODULE_NOT_FOUND",a}var p=n[i]={exports:{}};e[i][0].call(p.exports,function(r){var n=e[i][1][r];return o(n||r)},p,p.exports,r,e,n,t)}return n[i].exports}for(var u="function"==typeof require&&require,i=0;i g.successors(v) : v => g.neighbors(v); + var orderFunc = order === "post" ? postOrderDfs : preOrderDfs; + + var acc = []; + var visited = {}; + vs.forEach(v => { + if (!g.hasNode(v)) { + throw new Error("Graph does not have node: " + v); + } + + orderFunc(v, navigation, visited, acc); + }); + + return acc; +} + +function postOrderDfs(v, navigation, visited, acc) { + var stack = [[v, false]]; + while (stack.length > 0) { + var curr = stack.pop(); + if (curr[1]) { + acc.push(curr[0]); + } else { + if (!visited.hasOwnProperty(curr[0])) { + visited[curr[0]] = true; + stack.push([curr[0], true]); + forEachRight(navigation(curr[0]), w => stack.push([w, false])); + } + } + } +} + +function preOrderDfs(v, navigation, visited, acc) { + var stack = [v]; + while (stack.length > 0) { + var curr = stack.pop(); + if (!visited.hasOwnProperty(curr)) { + visited[curr] = true; + acc.push(curr); + forEachRight(navigation(curr), w => stack.push(w)); + } + } +} + +function forEachRight(array, iteratee) { + var length = array.length; + while (length--) { + iteratee(array[length], length, array); + } + + return array; +} + +},{}],4:[function(require,module,exports){ +var dijkstra = require("./dijkstra"); + +module.exports = dijkstraAll; + +function dijkstraAll(g, weightFunc, edgeFunc) { + return g.nodes().reduce(function(acc, v) { + acc[v] = dijkstra(g, v, weightFunc, edgeFunc); + return acc; + }, {}); +} + +},{"./dijkstra":5}],5:[function(require,module,exports){ +var PriorityQueue = require("../data/priority-queue"); + +module.exports = dijkstra; + +var DEFAULT_WEIGHT_FUNC = () => 1; + +function dijkstra(g, source, weightFn, edgeFn) { + return runDijkstra(g, String(source), + weightFn || DEFAULT_WEIGHT_FUNC, + edgeFn || function(v) { return g.outEdges(v); }); +} + +function runDijkstra(g, source, weightFn, edgeFn) { + var results = {}; + var pq = new PriorityQueue(); + var v, vEntry; + + var updateNeighbors = function(edge) { + var w = edge.v !== v ? edge.v : edge.w; + var wEntry = results[w]; + var weight = weightFn(edge); + var distance = vEntry.distance + weight; + + if (weight < 0) { + throw new Error("dijkstra does not allow negative edge weights. " + + "Bad edge: " + edge + " Weight: " + weight); + } + + if (distance < wEntry.distance) { + wEntry.distance = distance; + wEntry.predecessor = v; + pq.decrease(w, distance); + } + }; + + g.nodes().forEach(function(v) { + var distance = v === source ? 0 : Number.POSITIVE_INFINITY; + results[v] = { distance: distance }; + pq.add(v, distance); + }); + + while (pq.size() > 0) { + v = pq.removeMin(); + vEntry = results[v]; + if (vEntry.distance === Number.POSITIVE_INFINITY) { + break; + } + + edgeFn(v).forEach(updateNeighbors); + } + + return results; +} + +},{"../data/priority-queue":15}],6:[function(require,module,exports){ +var tarjan = require("./tarjan"); + +module.exports = findCycles; + +function findCycles(g) { + return tarjan(g).filter(function(cmpt) { + return cmpt.length > 1 || (cmpt.length === 1 && g.hasEdge(cmpt[0], cmpt[0])); + }); +} + +},{"./tarjan":13}],7:[function(require,module,exports){ +module.exports = floydWarshall; + +var DEFAULT_WEIGHT_FUNC = () => 1; + +function floydWarshall(g, weightFn, edgeFn) { + return runFloydWarshall(g, + weightFn || DEFAULT_WEIGHT_FUNC, + edgeFn || function(v) { return g.outEdges(v); }); +} + +function runFloydWarshall(g, weightFn, edgeFn) { + var results = {}; + var nodes = g.nodes(); + + nodes.forEach(function(v) { + results[v] = {}; + results[v][v] = { distance: 0 }; + nodes.forEach(function(w) { + if (v !== w) { + results[v][w] = { distance: Number.POSITIVE_INFINITY }; + } + }); + edgeFn(v).forEach(function(edge) { + var w = edge.v === v ? edge.w : edge.v; + var d = weightFn(edge); + results[v][w] = { distance: d, predecessor: v }; + }); + }); + + nodes.forEach(function(k) { + var rowK = results[k]; + nodes.forEach(function(i) { + var rowI = results[i]; + nodes.forEach(function(j) { + var ik = rowI[k]; + var kj = rowK[j]; + var ij = rowI[j]; + var altDistance = ik.distance + kj.distance; + if (altDistance < ij.distance) { + ij.distance = altDistance; + ij.predecessor = kj.predecessor; + } + }); + }); + }); + + return results; +} + +},{}],8:[function(require,module,exports){ +module.exports = { + components: require("./components"), + dijkstra: require("./dijkstra"), + dijkstraAll: require("./dijkstra-all"), + findCycles: require("./find-cycles"), + floydWarshall: require("./floyd-warshall"), + isAcyclic: require("./is-acyclic"), + postorder: require("./postorder"), + preorder: require("./preorder"), + prim: require("./prim"), + tarjan: require("./tarjan"), + topsort: require("./topsort") +}; + +},{"./components":2,"./dijkstra":5,"./dijkstra-all":4,"./find-cycles":6,"./floyd-warshall":7,"./is-acyclic":9,"./postorder":10,"./preorder":11,"./prim":12,"./tarjan":13,"./topsort":14}],9:[function(require,module,exports){ +var topsort = require("./topsort"); + +module.exports = isAcyclic; + +function isAcyclic(g) { + try { + topsort(g); + } catch (e) { + if (e instanceof topsort.CycleException) { + return false; + } + throw e; + } + return true; +} + +},{"./topsort":14}],10:[function(require,module,exports){ +var dfs = require("./dfs"); + +module.exports = postorder; + +function postorder(g, vs) { + return dfs(g, vs, "post"); +} + +},{"./dfs":3}],11:[function(require,module,exports){ +var dfs = require("./dfs"); + +module.exports = preorder; + +function preorder(g, vs) { + return dfs(g, vs, "pre"); +} + +},{"./dfs":3}],12:[function(require,module,exports){ +var Graph = require("../graph"); +var PriorityQueue = require("../data/priority-queue"); + +module.exports = prim; + +function prim(g, weightFunc) { + var result = new Graph(); + var parents = {}; + var pq = new PriorityQueue(); + var v; + + function updateNeighbors(edge) { + var w = edge.v === v ? edge.w : edge.v; + var pri = pq.priority(w); + if (pri !== undefined) { + var edgeWeight = weightFunc(edge); + if (edgeWeight < pri) { + parents[w] = v; + pq.decrease(w, edgeWeight); + } + } + } + + if (g.nodeCount() === 0) { + return result; + } + + g.nodes().forEach(function(v) { + pq.add(v, Number.POSITIVE_INFINITY); + result.setNode(v); + }); + + // Start from an arbitrary node + pq.decrease(g.nodes()[0], 0); + + var init = false; + while (pq.size() > 0) { + v = pq.removeMin(); + if (parents.hasOwnProperty(v)) { + result.setEdge(v, parents[v]); + } else if (init) { + throw new Error("Input graph is not connected: " + g); + } else { + init = true; + } + + g.nodeEdges(v).forEach(updateNeighbors); + } + + return result; +} + +},{"../data/priority-queue":15,"../graph":16}],13:[function(require,module,exports){ +module.exports = tarjan; + +function tarjan(g) { + var index = 0; + var stack = []; + var visited = {}; // node id -> { onStack, lowlink, index } + var results = []; + + function dfs(v) { + var entry = visited[v] = { + onStack: true, + lowlink: index, + index: index++ + }; + stack.push(v); + + g.successors(v).forEach(function(w) { + if (!visited.hasOwnProperty(w)) { + dfs(w); + entry.lowlink = Math.min(entry.lowlink, visited[w].lowlink); + } else if (visited[w].onStack) { + entry.lowlink = Math.min(entry.lowlink, visited[w].index); + } + }); + + if (entry.lowlink === entry.index) { + var cmpt = []; + var w; + do { + w = stack.pop(); + visited[w].onStack = false; + cmpt.push(w); + } while (v !== w); + results.push(cmpt); + } + } + + g.nodes().forEach(function(v) { + if (!visited.hasOwnProperty(v)) { + dfs(v); + } + }); + + return results; +} + +},{}],14:[function(require,module,exports){ +function topsort(g) { + var visited = {}; + var stack = {}; + var results = []; + + function visit(node) { + if (stack.hasOwnProperty(node)) { + throw new CycleException(); + } + + if (!visited.hasOwnProperty(node)) { + stack[node] = true; + visited[node] = true; + g.predecessors(node).forEach(visit); + delete stack[node]; + results.push(node); + } + } + + g.sinks().forEach(visit); + + if (Object.keys(visited).length !== g.nodeCount()) { + throw new CycleException(); + } + + return results; +} + +class CycleException extends Error { + constructor() { + super(...arguments); + } +} + +module.exports = topsort; +topsort.CycleException = CycleException; + +},{}],15:[function(require,module,exports){ +/** + * A min-priority queue data structure. This algorithm is derived from Cormen, + * et al., "Introduction to Algorithms". The basic idea of a min-priority + * queue is that you can efficiently (in O(1) time) get the smallest key in + * the queue. Adding and removing elements takes O(log n) time. A key can + * have its priority decreased in O(log n) time. + */ +class PriorityQueue { + _arr = []; + _keyIndices = {}; + + /** + * Returns the number of elements in the queue. Takes `O(1)` time. + */ + size() { + return this._arr.length; + } + + /** + * Returns the keys that are in the queue. Takes `O(n)` time. + */ + keys() { + return this._arr.map(function(x) { return x.key; }); + } + + /** + * Returns `true` if **key** is in the queue and `false` if not. + */ + has(key) { + return this._keyIndices.hasOwnProperty(key); + } + + /** + * Returns the priority for **key**. If **key** is not present in the queue + * then this function returns `undefined`. Takes `O(1)` time. + * + * @param {Object} key + */ + priority(key) { + var index = this._keyIndices[key]; + if (index !== undefined) { + return this._arr[index].priority; + } + } + + /** + * Returns the key for the minimum element in this queue. If the queue is + * empty this function throws an Error. Takes `O(1)` time. + */ + min() { + if (this.size() === 0) { + throw new Error("Queue underflow"); + } + return this._arr[0].key; + } + + /** + * Inserts a new key into the priority queue. If the key already exists in + * the queue this function returns `false`; otherwise it will return `true`. + * Takes `O(n)` time. + * + * @param {Object} key the key to add + * @param {Number} priority the initial priority for the key + */ + add(key, priority) { + var keyIndices = this._keyIndices; + key = String(key); + if (!keyIndices.hasOwnProperty(key)) { + var arr = this._arr; + var index = arr.length; + keyIndices[key] = index; + arr.push({key: key, priority: priority}); + this._decrease(index); + return true; + } + return false; + } + + /** + * Removes and returns the smallest key in the queue. Takes `O(log n)` time. + */ + removeMin() { + this._swap(0, this._arr.length - 1); + var min = this._arr.pop(); + delete this._keyIndices[min.key]; + this._heapify(0); + return min.key; + } + + /** + * Decreases the priority for **key** to **priority**. If the new priority is + * greater than the previous priority, this function will throw an Error. + * + * @param {Object} key the key for which to raise priority + * @param {Number} priority the new priority for the key + */ + decrease(key, priority) { + var index = this._keyIndices[key]; + if (priority > this._arr[index].priority) { + throw new Error("New priority is greater than current priority. " + + "Key: " + key + " Old: " + this._arr[index].priority + " New: " + priority); + } + this._arr[index].priority = priority; + this._decrease(index); + } + + _heapify(i) { + var arr = this._arr; + var l = 2 * i; + var r = l + 1; + var largest = i; + if (l < arr.length) { + largest = arr[l].priority < arr[largest].priority ? l : largest; + if (r < arr.length) { + largest = arr[r].priority < arr[largest].priority ? r : largest; + } + if (largest !== i) { + this._swap(i, largest); + this._heapify(largest); + } + } + } + + _decrease(index) { + var arr = this._arr; + var priority = arr[index].priority; + var parent; + while (index !== 0) { + parent = index >> 1; + if (arr[parent].priority < priority) { + break; + } + this._swap(index, parent); + index = parent; + } + } + + _swap(i, j) { + var arr = this._arr; + var keyIndices = this._keyIndices; + var origArrI = arr[i]; + var origArrJ = arr[j]; + arr[i] = origArrJ; + arr[j] = origArrI; + keyIndices[origArrJ.key] = i; + keyIndices[origArrI.key] = j; + } +} + +module.exports = PriorityQueue; + +},{}],16:[function(require,module,exports){ +"use strict"; + +var DEFAULT_EDGE_NAME = "\x00"; +var GRAPH_NODE = "\x00"; +var EDGE_KEY_DELIM = "\x01"; + +// Implementation notes: +// +// * Node id query functions should return string ids for the nodes +// * Edge id query functions should return an "edgeObj", edge object, that is +// composed of enough information to uniquely identify an edge: {v, w, name}. +// * Internally we use an "edgeId", a stringified form of the edgeObj, to +// reference edges. This is because we need a performant way to look these +// edges up and, object properties, which have string keys, are the closest +// we're going to get to a performant hashtable in JavaScript. + +class Graph { + _isDirected = true; + _isMultigraph = false; + _isCompound = false; + + // Label for the graph itself + _label; + + // Defaults to be set when creating a new node + _defaultNodeLabelFn = () => undefined; + + // Defaults to be set when creating a new edge + _defaultEdgeLabelFn = () => undefined; + + // v -> label + _nodes = {}; + + // v -> edgeObj + _in = {}; + + // u -> v -> Number + _preds = {}; + + // v -> edgeObj + _out = {}; + + // v -> w -> Number + _sucs = {}; + + // e -> edgeObj + _edgeObjs = {}; + + // e -> label + _edgeLabels = {}; + + /* Number of nodes in the graph. Should only be changed by the implementation. */ + _nodeCount = 0; + + /* Number of edges in the graph. Should only be changed by the implementation. */ + _edgeCount = 0; + + _parent; + + _children; + + constructor(opts) { + if (opts) { + this._isDirected = opts.hasOwnProperty("directed") ? opts.directed : true; + this._isMultigraph = opts.hasOwnProperty("multigraph") ? opts.multigraph : false; + this._isCompound = opts.hasOwnProperty("compound") ? opts.compound : false; + } + + if (this._isCompound) { + // v -> parent + this._parent = {}; + + // v -> children + this._children = {}; + this._children[GRAPH_NODE] = {}; + } + } + + /* === Graph functions ========= */ + + /** + * Whether graph was created with 'directed' flag set to true or not. + */ + isDirected() { + return this._isDirected; + } + + /** + * Whether graph was created with 'multigraph' flag set to true or not. + */ + isMultigraph() { + return this._isMultigraph; + } + + /** + * Whether graph was created with 'compound' flag set to true or not. + */ + isCompound() { + return this._isCompound; + } + + /** + * Sets the label of the graph. + */ + setGraph(label) { + this._label = label; + return this; + } + + /** + * Gets the graph label. + */ + graph() { + return this._label; + } + + + /* === Node functions ========== */ + + /** + * Sets the default node label. If newDefault is a function, it will be + * invoked ach time when setting a label for a node. Otherwise, this label + * will be assigned as default label in case if no label was specified while + * setting a node. + * Complexity: O(1). + */ + setDefaultNodeLabel(newDefault) { + this._defaultNodeLabelFn = newDefault; + if (typeof newDefault !== 'function') { + this._defaultNodeLabelFn = () => newDefault; + } + + return this; + } + + /** + * Gets the number of nodes in the graph. + * Complexity: O(1). + */ + nodeCount() { + return this._nodeCount; + } + + /** + * Gets all nodes of the graph. Note, the in case of compound graph subnodes are + * not included in list. + * Complexity: O(1). + */ + nodes() { + return Object.keys(this._nodes); + } + + /** + * Gets list of nodes without in-edges. + * Complexity: O(|V|). + */ + sources() { + var self = this; + return this.nodes().filter(v => Object.keys(self._in[v]).length === 0); + } + + /** + * Gets list of nodes without out-edges. + * Complexity: O(|V|). + */ + sinks() { + var self = this; + return this.nodes().filter(v => Object.keys(self._out[v]).length === 0); + } + + /** + * Invokes setNode method for each node in names list. + * Complexity: O(|names|). + */ + setNodes(vs, value) { + var args = arguments; + var self = this; + vs.forEach(function(v) { + if (args.length > 1) { + self.setNode(v, value); + } else { + self.setNode(v); + } + }); + return this; + } + + /** + * Creates or updates the value for the node v in the graph. If label is supplied + * it is set as the value for the node. If label is not supplied and the node was + * created by this call then the default node label will be assigned. + * Complexity: O(1). + */ + setNode(v, value) { + if (this._nodes.hasOwnProperty(v)) { + if (arguments.length > 1) { + this._nodes[v] = value; + } + return this; + } + + this._nodes[v] = arguments.length > 1 ? value : this._defaultNodeLabelFn(v); + if (this._isCompound) { + this._parent[v] = GRAPH_NODE; + this._children[v] = {}; + this._children[GRAPH_NODE][v] = true; + } + this._in[v] = {}; + this._preds[v] = {}; + this._out[v] = {}; + this._sucs[v] = {}; + ++this._nodeCount; + return this; + } + + /** + * Gets the label of node with specified name. + * Complexity: O(|V|). + */ + node(v) { + return this._nodes[v]; + } + + /** + * Detects whether graph has a node with specified name or not. + */ + hasNode(v) { + return this._nodes.hasOwnProperty(v); + } + + /** + * Remove the node with the name from the graph or do nothing if the node is not in + * the graph. If the node was removed this function also removes any incident + * edges. + * Complexity: O(1). + */ + removeNode(v) { + var self = this; + if (this._nodes.hasOwnProperty(v)) { + var removeEdge = e => self.removeEdge(self._edgeObjs[e]); + delete this._nodes[v]; + if (this._isCompound) { + this._removeFromParentsChildList(v); + delete this._parent[v]; + this.children(v).forEach(function(child) { + self.setParent(child); + }); + delete this._children[v]; + } + Object.keys(this._in[v]).forEach(removeEdge); + delete this._in[v]; + delete this._preds[v]; + Object.keys(this._out[v]).forEach(removeEdge); + delete this._out[v]; + delete this._sucs[v]; + --this._nodeCount; + } + return this; + } + + /** + * Sets node p as a parent for node v if it is defined, or removes the + * parent for v if p is undefined. Method throws an exception in case of + * invoking it in context of noncompound graph. + * Average-case complexity: O(1). + */ + setParent(v, parent) { + if (!this._isCompound) { + throw new Error("Cannot set parent in a non-compound graph"); + } + + if (parent === undefined) { + parent = GRAPH_NODE; + } else { + // Coerce parent to string + parent += ""; + for (var ancestor = parent; ancestor !== undefined; ancestor = this.parent(ancestor)) { + if (ancestor === v) { + throw new Error("Setting " + parent+ " as parent of " + v + + " would create a cycle"); + } + } + + this.setNode(parent); + } + + this.setNode(v); + this._removeFromParentsChildList(v); + this._parent[v] = parent; + this._children[parent][v] = true; + return this; + } + + _removeFromParentsChildList(v) { + delete this._children[this._parent[v]][v]; + } + + /** + * Gets parent node for node v. + * Complexity: O(1). + */ + parent(v) { + if (this._isCompound) { + var parent = this._parent[v]; + if (parent !== GRAPH_NODE) { + return parent; + } + } + } + + /** + * Gets list of direct children of node v. + * Complexity: O(1). + */ + children(v = GRAPH_NODE) { + if (this._isCompound) { + var children = this._children[v]; + if (children) { + return Object.keys(children); + } + } else if (v === GRAPH_NODE) { + return this.nodes(); + } else if (this.hasNode(v)) { + return []; + } + } + + /** + * Return all nodes that are predecessors of the specified node or undefined if node v is not in + * the graph. Behavior is undefined for undirected graphs - use neighbors instead. + * Complexity: O(|V|). + */ + predecessors(v) { + var predsV = this._preds[v]; + if (predsV) { + return Object.keys(predsV); + } + } + + /** + * Return all nodes that are successors of the specified node or undefined if node v is not in + * the graph. Behavior is undefined for undirected graphs - use neighbors instead. + * Complexity: O(|V|). + */ + successors(v) { + var sucsV = this._sucs[v]; + if (sucsV) { + return Object.keys(sucsV); + } + } + + /** + * Return all nodes that are predecessors or successors of the specified node or undefined if + * node v is not in the graph. + * Complexity: O(|V|). + */ + neighbors(v) { + var preds = this.predecessors(v); + if (preds) { + const union = new Set(preds); + for (var succ of this.successors(v)) { + union.add(succ); + } + + return Array.from(union.values()); + } + } + + isLeaf(v) { + var neighbors; + if (this.isDirected()) { + neighbors = this.successors(v); + } else { + neighbors = this.neighbors(v); + } + return neighbors.length === 0; + } + + /** + * Creates new graph with nodes filtered via filter. Edges incident to rejected node + * are also removed. In case of compound graph, if parent is rejected by filter, + * than all its children are rejected too. + * Average-case complexity: O(|E|+|V|). + */ + filterNodes(filter) { + var copy = new this.constructor({ + directed: this._isDirected, + multigraph: this._isMultigraph, + compound: this._isCompound + }); + + copy.setGraph(this.graph()); + + var self = this; + Object.entries(this._nodes).forEach(function([v, value]) { + if (filter(v)) { + copy.setNode(v, value); + } + }); + + Object.values(this._edgeObjs).forEach(function(e) { + if (copy.hasNode(e.v) && copy.hasNode(e.w)) { + copy.setEdge(e, self.edge(e)); + } + }); + + var parents = {}; + function findParent(v) { + var parent = self.parent(v); + if (parent === undefined || copy.hasNode(parent)) { + parents[v] = parent; + return parent; + } else if (parent in parents) { + return parents[parent]; + } else { + return findParent(parent); + } + } + + if (this._isCompound) { + copy.nodes().forEach(v => copy.setParent(v, findParent(v))); + } + + return copy; + } + + /* === Edge functions ========== */ + + /** + * Sets the default edge label or factory function. This label will be + * assigned as default label in case if no label was specified while setting + * an edge or this function will be invoked each time when setting an edge + * with no label specified and returned value * will be used as a label for edge. + * Complexity: O(1). + */ + setDefaultEdgeLabel(newDefault) { + this._defaultEdgeLabelFn = newDefault; + if (typeof newDefault !== 'function') { + this._defaultEdgeLabelFn = () => newDefault; + } + + return this; + } + + /** + * Gets the number of edges in the graph. + * Complexity: O(1). + */ + edgeCount() { + return this._edgeCount; + } + + /** + * Gets edges of the graph. In case of compound graph subgraphs are not considered. + * Complexity: O(|E|). + */ + edges() { + return Object.values(this._edgeObjs); + } + + /** + * Establish an edges path over the nodes in nodes list. If some edge is already + * exists, it will update its label, otherwise it will create an edge between pair + * of nodes with label provided or default label if no label provided. + * Complexity: O(|nodes|). + */ + setPath(vs, value) { + var self = this; + var args = arguments; + vs.reduce(function(v, w) { + if (args.length > 1) { + self.setEdge(v, w, value); + } else { + self.setEdge(v, w); + } + return w; + }); + return this; + } + + /** + * Creates or updates the label for the edge (v, w) with the optionally supplied + * name. If label is supplied it is set as the value for the edge. If label is not + * supplied and the edge was created by this call then the default edge label will + * be assigned. The name parameter is only useful with multigraphs. + */ + setEdge() { + var v, w, name, value; + var valueSpecified = false; + var arg0 = arguments[0]; + + if (typeof arg0 === "object" && arg0 !== null && "v" in arg0) { + v = arg0.v; + w = arg0.w; + name = arg0.name; + if (arguments.length === 2) { + value = arguments[1]; + valueSpecified = true; + } + } else { + v = arg0; + w = arguments[1]; + name = arguments[3]; + if (arguments.length > 2) { + value = arguments[2]; + valueSpecified = true; + } + } + + v = "" + v; + w = "" + w; + if (name !== undefined) { + name = "" + name; + } + + var e = edgeArgsToId(this._isDirected, v, w, name); + if (this._edgeLabels.hasOwnProperty(e)) { + if (valueSpecified) { + this._edgeLabels[e] = value; + } + return this; + } + + if (name !== undefined && !this._isMultigraph) { + throw new Error("Cannot set a named edge when isMultigraph = false"); + } + + // It didn't exist, so we need to create it. + // First ensure the nodes exist. + this.setNode(v); + this.setNode(w); + + this._edgeLabels[e] = valueSpecified ? value : this._defaultEdgeLabelFn(v, w, name); + + var edgeObj = edgeArgsToObj(this._isDirected, v, w, name); + // Ensure we add undirected edges in a consistent way. + v = edgeObj.v; + w = edgeObj.w; + + Object.freeze(edgeObj); + this._edgeObjs[e] = edgeObj; + incrementOrInitEntry(this._preds[w], v); + incrementOrInitEntry(this._sucs[v], w); + this._in[w][e] = edgeObj; + this._out[v][e] = edgeObj; + this._edgeCount++; + return this; + } + + /** + * Gets the label for the specified edge. + * Complexity: O(1). + */ + edge(v, w, name) { + var e = (arguments.length === 1 + ? edgeObjToId(this._isDirected, arguments[0]) + : edgeArgsToId(this._isDirected, v, w, name)); + return this._edgeLabels[e]; + } + + /** + * Gets the label for the specified edge and converts it to an object. + * Complexity: O(1) + */ + edgeAsObj() { + const edge = this.edge(...arguments); + if (typeof edge !== "object") { + return {label: edge}; + } + + return edge; + } + + /** + * Detects whether the graph contains specified edge or not. No subgraphs are considered. + * Complexity: O(1). + */ + hasEdge(v, w, name) { + var e = (arguments.length === 1 + ? edgeObjToId(this._isDirected, arguments[0]) + : edgeArgsToId(this._isDirected, v, w, name)); + return this._edgeLabels.hasOwnProperty(e); + } + + /** + * Removes the specified edge from the graph. No subgraphs are considered. + * Complexity: O(1). + */ + removeEdge(v, w, name) { + var e = (arguments.length === 1 + ? edgeObjToId(this._isDirected, arguments[0]) + : edgeArgsToId(this._isDirected, v, w, name)); + var edge = this._edgeObjs[e]; + if (edge) { + v = edge.v; + w = edge.w; + delete this._edgeLabels[e]; + delete this._edgeObjs[e]; + decrementOrRemoveEntry(this._preds[w], v); + decrementOrRemoveEntry(this._sucs[v], w); + delete this._in[w][e]; + delete this._out[v][e]; + this._edgeCount--; + } + return this; + } + + /** + * Return all edges that point to the node v. Optionally filters those edges down to just those + * coming from node u. Behavior is undefined for undirected graphs - use nodeEdges instead. + * Complexity: O(|E|). + */ + inEdges(v, u) { + var inV = this._in[v]; + if (inV) { + var edges = Object.values(inV); + if (!u) { + return edges; + } + return edges.filter(edge => edge.v === u); + } + } + + /** + * Return all edges that are pointed at by node v. Optionally filters those edges down to just + * those point to w. Behavior is undefined for undirected graphs - use nodeEdges instead. + * Complexity: O(|E|). + */ + outEdges(v, w) { + var outV = this._out[v]; + if (outV) { + var edges = Object.values(outV); + if (!w) { + return edges; + } + return edges.filter(edge => edge.w === w); + } + } + + /** + * Returns all edges to or from node v regardless of direction. Optionally filters those edges + * down to just those between nodes v and w regardless of direction. + * Complexity: O(|E|). + */ + nodeEdges(v, w) { + var inEdges = this.inEdges(v, w); + if (inEdges) { + return inEdges.concat(this.outEdges(v, w)); + } + } +} + +function incrementOrInitEntry(map, k) { + if (map[k]) { + map[k]++; + } else { + map[k] = 1; + } +} + +function decrementOrRemoveEntry(map, k) { + if (!--map[k]) { delete map[k]; } +} + +function edgeArgsToId(isDirected, v_, w_, name) { + var v = "" + v_; + var w = "" + w_; + if (!isDirected && v > w) { + var tmp = v; + v = w; + w = tmp; + } + return v + EDGE_KEY_DELIM + w + EDGE_KEY_DELIM + + (name === undefined ? DEFAULT_EDGE_NAME : name); +} + +function edgeArgsToObj(isDirected, v_, w_, name) { + var v = "" + v_; + var w = "" + w_; + if (!isDirected && v > w) { + var tmp = v; + v = w; + w = tmp; + } + var edgeObj = { v: v, w: w }; + if (name) { + edgeObj.name = name; + } + return edgeObj; +} + +function edgeObjToId(isDirected, edgeObj) { + return edgeArgsToId(isDirected, edgeObj.v, edgeObj.w, edgeObj.name); +} + +module.exports = Graph; + +},{}],17:[function(require,module,exports){ +// Includes only the "core" of graphlib +module.exports = { + Graph: require("./graph"), + version: require("./version") +}; + +},{"./graph":16,"./version":19}],18:[function(require,module,exports){ +var Graph = require("./graph"); + +module.exports = { + write: write, + read: read +}; + +/** + * Creates a JSON representation of the graph that can be serialized to a string with + * JSON.stringify. The graph can later be restored using json.read. + */ +function write(g) { + var json = { + options: { + directed: g.isDirected(), + multigraph: g.isMultigraph(), + compound: g.isCompound() + }, + nodes: writeNodes(g), + edges: writeEdges(g) + }; + + if (g.graph() !== undefined) { + json.value = structuredClone(g.graph()); + } + return json; +} + +function writeNodes(g) { + return g.nodes().map(function(v) { + var nodeValue = g.node(v); + var parent = g.parent(v); + var node = { v: v }; + if (nodeValue !== undefined) { + node.value = nodeValue; + } + if (parent !== undefined) { + node.parent = parent; + } + return node; + }); +} + +function writeEdges(g) { + return g.edges().map(function(e) { + var edgeValue = g.edge(e); + var edge = { v: e.v, w: e.w }; + if (e.name !== undefined) { + edge.name = e.name; + } + if (edgeValue !== undefined) { + edge.value = edgeValue; + } + return edge; + }); +} + +/** + * Takes JSON as input and returns the graph representation. + * + * @example + * var g2 = graphlib.json.read(JSON.parse(str)); + * g2.nodes(); + * // ['a', 'b'] + * g2.edges() + * // [ { v: 'a', w: 'b' } ] + */ +function read(json) { + var g = new Graph(json.options).setGraph(json.value); + json.nodes.forEach(function(entry) { + g.setNode(entry.v, entry.value); + if (entry.parent) { + g.setParent(entry.v, entry.parent); + } + }); + json.edges.forEach(function(entry) { + g.setEdge({ v: entry.v, w: entry.w, name: entry.name }, entry.value); + }); + return g; +} + +},{"./graph":16}],19:[function(require,module,exports){ +module.exports = '2.2.3'; + +},{}]},{},[1])(1) +}); diff --git a/project/graphlib/v2.2.3/graphlib.min.js b/project/graphlib/v2.2.3/graphlib.min.js new file mode 100644 index 0000000..c638472 --- /dev/null +++ b/project/graphlib/v2.2.3/graphlib.min.js @@ -0,0 +1,304 @@ +(function(f){if(typeof exports==="object"&&typeof module!=="undefined"){module.exports=f()}else if(typeof define==="function"&&define.amd){define([],f)}else{var g;if(typeof window!=="undefined"){g=window}else if(typeof global!=="undefined"){g=global}else if(typeof self!=="undefined"){g=self}else{g=this}g.graphlib=f()}})(function(){var define,module,exports;return function(){function r(e,n,t){function o(i,f){if(!n[i]){if(!e[i]){var c="function"==typeof require&&require;if(!f&&c)return c(i,!0);if(u)return u(i,!0);var a=new Error("Cannot find module '"+i+"'");throw a.code="MODULE_NOT_FOUND",a}var p=n[i]={exports:{}};e[i][0].call(p.exports,function(r){var n=e[i][1][r];return o(n||r)},p,p.exports,r,e,n,t)}return n[i].exports}for(var u="function"==typeof require&&require,i=0;ig.successors(v):v=>g.neighbors(v);var orderFunc=order==="post"?postOrderDfs:preOrderDfs;var acc=[];var visited={};vs.forEach(v=>{if(!g.hasNode(v)){throw new Error("Graph does not have node: "+v)}orderFunc(v,navigation,visited,acc)});return acc}function postOrderDfs(v,navigation,visited,acc){var stack=[[v,false]];while(stack.length>0){var curr=stack.pop();if(curr[1]){acc.push(curr[0])}else{if(!visited.hasOwnProperty(curr[0])){visited[curr[0]]=true;stack.push([curr[0],true]);forEachRight(navigation(curr[0]),w=>stack.push([w,false]))}}}}function preOrderDfs(v,navigation,visited,acc){var stack=[v];while(stack.length>0){var curr=stack.pop();if(!visited.hasOwnProperty(curr)){visited[curr]=true;acc.push(curr);forEachRight(navigation(curr),w=>stack.push(w))}}}function forEachRight(array,iteratee){var length=array.length;while(length--){iteratee(array[length],length,array)}return array}},{}],4:[function(require,module,exports){var dijkstra=require("./dijkstra");module.exports=dijkstraAll;function dijkstraAll(g,weightFunc,edgeFunc){return g.nodes().reduce(function(acc,v){acc[v]=dijkstra(g,v,weightFunc,edgeFunc);return acc},{})}},{"./dijkstra":5}],5:[function(require,module,exports){var PriorityQueue=require("../data/priority-queue");module.exports=dijkstra;var DEFAULT_WEIGHT_FUNC=()=>1;function dijkstra(g,source,weightFn,edgeFn){return runDijkstra(g,String(source),weightFn||DEFAULT_WEIGHT_FUNC,edgeFn||function(v){return g.outEdges(v)})}function runDijkstra(g,source,weightFn,edgeFn){var results={};var pq=new PriorityQueue;var v,vEntry;var updateNeighbors=function(edge){var w=edge.v!==v?edge.v:edge.w;var wEntry=results[w];var weight=weightFn(edge);var distance=vEntry.distance+weight;if(weight<0){throw new Error("dijkstra does not allow negative edge weights. "+"Bad edge: "+edge+" Weight: "+weight)}if(distance0){v=pq.removeMin();vEntry=results[v];if(vEntry.distance===Number.POSITIVE_INFINITY){break}edgeFn(v).forEach(updateNeighbors)}return results}},{"../data/priority-queue":15}],6:[function(require,module,exports){var tarjan=require("./tarjan");module.exports=findCycles;function findCycles(g){return tarjan(g).filter(function(cmpt){return cmpt.length>1||cmpt.length===1&&g.hasEdge(cmpt[0],cmpt[0])})}},{"./tarjan":13}],7:[function(require,module,exports){module.exports=floydWarshall;var DEFAULT_WEIGHT_FUNC=()=>1;function floydWarshall(g,weightFn,edgeFn){return runFloydWarshall(g,weightFn||DEFAULT_WEIGHT_FUNC,edgeFn||function(v){return g.outEdges(v)})}function runFloydWarshall(g,weightFn,edgeFn){var results={};var nodes=g.nodes();nodes.forEach(function(v){results[v]={};results[v][v]={distance:0};nodes.forEach(function(w){if(v!==w){results[v][w]={distance:Number.POSITIVE_INFINITY}}});edgeFn(v).forEach(function(edge){var w=edge.v===v?edge.w:edge.v;var d=weightFn(edge);results[v][w]={distance:d,predecessor:v}})});nodes.forEach(function(k){var rowK=results[k];nodes.forEach(function(i){var rowI=results[i];nodes.forEach(function(j){var ik=rowI[k];var kj=rowK[j];var ij=rowI[j];var altDistance=ik.distance+kj.distance;if(altDistance0){v=pq.removeMin();if(parents.hasOwnProperty(v)){result.setEdge(v,parents[v])}else if(init){throw new Error("Input graph is not connected: "+g)}else{init=true}g.nodeEdges(v).forEach(updateNeighbors)}return result}},{"../data/priority-queue":15,"../graph":16}],13:[function(require,module,exports){module.exports=tarjan;function tarjan(g){var index=0;var stack=[];var visited={};// node id -> { onStack, lowlink, index } +var results=[];function dfs(v){var entry=visited[v]={onStack:true,lowlink:index,index:index++};stack.push(v);g.successors(v).forEach(function(w){if(!visited.hasOwnProperty(w)){dfs(w);entry.lowlink=Math.min(entry.lowlink,visited[w].lowlink)}else if(visited[w].onStack){entry.lowlink=Math.min(entry.lowlink,visited[w].index)}});if(entry.lowlink===entry.index){var cmpt=[];var w;do{w=stack.pop();visited[w].onStack=false;cmpt.push(w)}while(v!==w);results.push(cmpt)}}g.nodes().forEach(function(v){if(!visited.hasOwnProperty(v)){dfs(v)}});return results}},{}],14:[function(require,module,exports){function topsort(g){var visited={};var stack={};var results=[];function visit(node){if(stack.hasOwnProperty(node)){throw new CycleException}if(!visited.hasOwnProperty(node)){stack[node]=true;visited[node]=true;g.predecessors(node).forEach(visit);delete stack[node];results.push(node)}}g.sinks().forEach(visit);if(Object.keys(visited).length!==g.nodeCount()){throw new CycleException}return results}class CycleException extends Error{constructor(){super(...arguments)}}module.exports=topsort;topsort.CycleException=CycleException},{}],15:[function(require,module,exports){ +/** + * A min-priority queue data structure. This algorithm is derived from Cormen, + * et al., "Introduction to Algorithms". The basic idea of a min-priority + * queue is that you can efficiently (in O(1) time) get the smallest key in + * the queue. Adding and removing elements takes O(log n) time. A key can + * have its priority decreased in O(log n) time. + */ +class PriorityQueue{_arr=[];_keyIndices={}; +/** + * Returns the number of elements in the queue. Takes `O(1)` time. + */size(){return this._arr.length} +/** + * Returns the keys that are in the queue. Takes `O(n)` time. + */keys(){return this._arr.map(function(x){return x.key})} +/** + * Returns `true` if **key** is in the queue and `false` if not. + */has(key){return this._keyIndices.hasOwnProperty(key)} +/** + * Returns the priority for **key**. If **key** is not present in the queue + * then this function returns `undefined`. Takes `O(1)` time. + * + * @param {Object} key + */priority(key){var index=this._keyIndices[key];if(index!==undefined){return this._arr[index].priority}} +/** + * Returns the key for the minimum element in this queue. If the queue is + * empty this function throws an Error. Takes `O(1)` time. + */min(){if(this.size()===0){throw new Error("Queue underflow")}return this._arr[0].key} +/** + * Inserts a new key into the priority queue. If the key already exists in + * the queue this function returns `false`; otherwise it will return `true`. + * Takes `O(n)` time. + * + * @param {Object} key the key to add + * @param {Number} priority the initial priority for the key + */add(key,priority){var keyIndices=this._keyIndices;key=String(key);if(!keyIndices.hasOwnProperty(key)){var arr=this._arr;var index=arr.length;keyIndices[key]=index;arr.push({key:key,priority:priority});this._decrease(index);return true}return false} +/** + * Removes and returns the smallest key in the queue. Takes `O(log n)` time. + */removeMin(){this._swap(0,this._arr.length-1);var min=this._arr.pop();delete this._keyIndices[min.key];this._heapify(0);return min.key} +/** + * Decreases the priority for **key** to **priority**. If the new priority is + * greater than the previous priority, this function will throw an Error. + * + * @param {Object} key the key for which to raise priority + * @param {Number} priority the new priority for the key + */decrease(key,priority){var index=this._keyIndices[key];if(priority>this._arr[index].priority){throw new Error("New priority is greater than current priority. "+"Key: "+key+" Old: "+this._arr[index].priority+" New: "+priority)}this._arr[index].priority=priority;this._decrease(index)}_heapify(i){var arr=this._arr;var l=2*i;var r=l+1;var largest=i;if(l>1;if(arr[parent].priorityundefined; +// Defaults to be set when creating a new edge +_defaultEdgeLabelFn=()=>undefined; +// v -> label +_nodes={}; +// v -> edgeObj +_in={}; +// u -> v -> Number +_preds={}; +// v -> edgeObj +_out={}; +// v -> w -> Number +_sucs={}; +// e -> edgeObj +_edgeObjs={}; +// e -> label +_edgeLabels={}; +/* Number of nodes in the graph. Should only be changed by the implementation. */_nodeCount=0; +/* Number of edges in the graph. Should only be changed by the implementation. */_edgeCount=0;_parent;_children;constructor(opts){if(opts){this._isDirected=opts.hasOwnProperty("directed")?opts.directed:true;this._isMultigraph=opts.hasOwnProperty("multigraph")?opts.multigraph:false;this._isCompound=opts.hasOwnProperty("compound")?opts.compound:false}if(this._isCompound){ +// v -> parent +this._parent={}; +// v -> children +this._children={};this._children[GRAPH_NODE]={}}} +/* === Graph functions ========= */ +/** + * Whether graph was created with 'directed' flag set to true or not. + */isDirected(){return this._isDirected} +/** + * Whether graph was created with 'multigraph' flag set to true or not. + */isMultigraph(){return this._isMultigraph} +/** + * Whether graph was created with 'compound' flag set to true or not. + */isCompound(){return this._isCompound} +/** + * Sets the label of the graph. + */setGraph(label){this._label=label;return this} +/** + * Gets the graph label. + */graph(){return this._label} +/* === Node functions ========== */ +/** + * Sets the default node label. If newDefault is a function, it will be + * invoked ach time when setting a label for a node. Otherwise, this label + * will be assigned as default label in case if no label was specified while + * setting a node. + * Complexity: O(1). + */setDefaultNodeLabel(newDefault){this._defaultNodeLabelFn=newDefault;if(typeof newDefault!=="function"){this._defaultNodeLabelFn=()=>newDefault}return this} +/** + * Gets the number of nodes in the graph. + * Complexity: O(1). + */nodeCount(){return this._nodeCount} +/** + * Gets all nodes of the graph. Note, the in case of compound graph subnodes are + * not included in list. + * Complexity: O(1). + */nodes(){return Object.keys(this._nodes)} +/** + * Gets list of nodes without in-edges. + * Complexity: O(|V|). + */sources(){var self=this;return this.nodes().filter(v=>Object.keys(self._in[v]).length===0)} +/** + * Gets list of nodes without out-edges. + * Complexity: O(|V|). + */sinks(){var self=this;return this.nodes().filter(v=>Object.keys(self._out[v]).length===0)} +/** + * Invokes setNode method for each node in names list. + * Complexity: O(|names|). + */setNodes(vs,value){var args=arguments;var self=this;vs.forEach(function(v){if(args.length>1){self.setNode(v,value)}else{self.setNode(v)}});return this} +/** + * Creates or updates the value for the node v in the graph. If label is supplied + * it is set as the value for the node. If label is not supplied and the node was + * created by this call then the default node label will be assigned. + * Complexity: O(1). + */setNode(v,value){if(this._nodes.hasOwnProperty(v)){if(arguments.length>1){this._nodes[v]=value}return this}this._nodes[v]=arguments.length>1?value:this._defaultNodeLabelFn(v);if(this._isCompound){this._parent[v]=GRAPH_NODE;this._children[v]={};this._children[GRAPH_NODE][v]=true}this._in[v]={};this._preds[v]={};this._out[v]={};this._sucs[v]={};++this._nodeCount;return this} +/** + * Gets the label of node with specified name. + * Complexity: O(|V|). + */node(v){return this._nodes[v]} +/** + * Detects whether graph has a node with specified name or not. + */hasNode(v){return this._nodes.hasOwnProperty(v)} +/** + * Remove the node with the name from the graph or do nothing if the node is not in + * the graph. If the node was removed this function also removes any incident + * edges. + * Complexity: O(1). + */removeNode(v){var self=this;if(this._nodes.hasOwnProperty(v)){var removeEdge=e=>self.removeEdge(self._edgeObjs[e]);delete this._nodes[v];if(this._isCompound){this._removeFromParentsChildList(v);delete this._parent[v];this.children(v).forEach(function(child){self.setParent(child)});delete this._children[v]}Object.keys(this._in[v]).forEach(removeEdge);delete this._in[v];delete this._preds[v];Object.keys(this._out[v]).forEach(removeEdge);delete this._out[v];delete this._sucs[v];--this._nodeCount}return this} +/** + * Sets node p as a parent for node v if it is defined, or removes the + * parent for v if p is undefined. Method throws an exception in case of + * invoking it in context of noncompound graph. + * Average-case complexity: O(1). + */setParent(v,parent){if(!this._isCompound){throw new Error("Cannot set parent in a non-compound graph")}if(parent===undefined){parent=GRAPH_NODE}else{ +// Coerce parent to string +parent+="";for(var ancestor=parent;ancestor!==undefined;ancestor=this.parent(ancestor)){if(ancestor===v){throw new Error("Setting "+parent+" as parent of "+v+" would create a cycle")}}this.setNode(parent)}this.setNode(v);this._removeFromParentsChildList(v);this._parent[v]=parent;this._children[parent][v]=true;return this}_removeFromParentsChildList(v){delete this._children[this._parent[v]][v]} +/** + * Gets parent node for node v. + * Complexity: O(1). + */parent(v){if(this._isCompound){var parent=this._parent[v];if(parent!==GRAPH_NODE){return parent}}} +/** + * Gets list of direct children of node v. + * Complexity: O(1). + */children(v=GRAPH_NODE){if(this._isCompound){var children=this._children[v];if(children){return Object.keys(children)}}else if(v===GRAPH_NODE){return this.nodes()}else if(this.hasNode(v)){return[]}} +/** + * Return all nodes that are predecessors of the specified node or undefined if node v is not in + * the graph. Behavior is undefined for undirected graphs - use neighbors instead. + * Complexity: O(|V|). + */predecessors(v){var predsV=this._preds[v];if(predsV){return Object.keys(predsV)}} +/** + * Return all nodes that are successors of the specified node or undefined if node v is not in + * the graph. Behavior is undefined for undirected graphs - use neighbors instead. + * Complexity: O(|V|). + */successors(v){var sucsV=this._sucs[v];if(sucsV){return Object.keys(sucsV)}} +/** + * Return all nodes that are predecessors or successors of the specified node or undefined if + * node v is not in the graph. + * Complexity: O(|V|). + */neighbors(v){var preds=this.predecessors(v);if(preds){const union=new Set(preds);for(var succ of this.successors(v)){union.add(succ)}return Array.from(union.values())}}isLeaf(v){var neighbors;if(this.isDirected()){neighbors=this.successors(v)}else{neighbors=this.neighbors(v)}return neighbors.length===0} +/** + * Creates new graph with nodes filtered via filter. Edges incident to rejected node + * are also removed. In case of compound graph, if parent is rejected by filter, + * than all its children are rejected too. + * Average-case complexity: O(|E|+|V|). + */filterNodes(filter){var copy=new this.constructor({directed:this._isDirected,multigraph:this._isMultigraph,compound:this._isCompound});copy.setGraph(this.graph());var self=this;Object.entries(this._nodes).forEach(function([v,value]){if(filter(v)){copy.setNode(v,value)}});Object.values(this._edgeObjs).forEach(function(e){if(copy.hasNode(e.v)&©.hasNode(e.w)){copy.setEdge(e,self.edge(e))}});var parents={};function findParent(v){var parent=self.parent(v);if(parent===undefined||copy.hasNode(parent)){parents[v]=parent;return parent}else if(parent in parents){return parents[parent]}else{return findParent(parent)}}if(this._isCompound){copy.nodes().forEach(v=>copy.setParent(v,findParent(v)))}return copy} +/* === Edge functions ========== */ +/** + * Sets the default edge label or factory function. This label will be + * assigned as default label in case if no label was specified while setting + * an edge or this function will be invoked each time when setting an edge + * with no label specified and returned value * will be used as a label for edge. + * Complexity: O(1). + */setDefaultEdgeLabel(newDefault){this._defaultEdgeLabelFn=newDefault;if(typeof newDefault!=="function"){this._defaultEdgeLabelFn=()=>newDefault}return this} +/** + * Gets the number of edges in the graph. + * Complexity: O(1). + */edgeCount(){return this._edgeCount} +/** + * Gets edges of the graph. In case of compound graph subgraphs are not considered. + * Complexity: O(|E|). + */edges(){return Object.values(this._edgeObjs)} +/** + * Establish an edges path over the nodes in nodes list. If some edge is already + * exists, it will update its label, otherwise it will create an edge between pair + * of nodes with label provided or default label if no label provided. + * Complexity: O(|nodes|). + */setPath(vs,value){var self=this;var args=arguments;vs.reduce(function(v,w){if(args.length>1){self.setEdge(v,w,value)}else{self.setEdge(v,w)}return w});return this} +/** + * Creates or updates the label for the edge (v, w) with the optionally supplied + * name. If label is supplied it is set as the value for the edge. If label is not + * supplied and the edge was created by this call then the default edge label will + * be assigned. The name parameter is only useful with multigraphs. + */setEdge(){var v,w,name,value;var valueSpecified=false;var arg0=arguments[0];if(typeof arg0==="object"&&arg0!==null&&"v"in arg0){v=arg0.v;w=arg0.w;name=arg0.name;if(arguments.length===2){value=arguments[1];valueSpecified=true}}else{v=arg0;w=arguments[1];name=arguments[3];if(arguments.length>2){value=arguments[2];valueSpecified=true}}v=""+v;w=""+w;if(name!==undefined){name=""+name}var e=edgeArgsToId(this._isDirected,v,w,name);if(this._edgeLabels.hasOwnProperty(e)){if(valueSpecified){this._edgeLabels[e]=value}return this}if(name!==undefined&&!this._isMultigraph){throw new Error("Cannot set a named edge when isMultigraph = false")} +// It didn't exist, so we need to create it. +// First ensure the nodes exist. +this.setNode(v);this.setNode(w);this._edgeLabels[e]=valueSpecified?value:this._defaultEdgeLabelFn(v,w,name);var edgeObj=edgeArgsToObj(this._isDirected,v,w,name); +// Ensure we add undirected edges in a consistent way. +v=edgeObj.v;w=edgeObj.w;Object.freeze(edgeObj);this._edgeObjs[e]=edgeObj;incrementOrInitEntry(this._preds[w],v);incrementOrInitEntry(this._sucs[v],w);this._in[w][e]=edgeObj;this._out[v][e]=edgeObj;this._edgeCount++;return this} +/** + * Gets the label for the specified edge. + * Complexity: O(1). + */edge(v,w,name){var e=arguments.length===1?edgeObjToId(this._isDirected,arguments[0]):edgeArgsToId(this._isDirected,v,w,name);return this._edgeLabels[e]} +/** + * Gets the label for the specified edge and converts it to an object. + * Complexity: O(1) + */edgeAsObj(){const edge=this.edge(...arguments);if(typeof edge!=="object"){return{label:edge}}return edge} +/** + * Detects whether the graph contains specified edge or not. No subgraphs are considered. + * Complexity: O(1). + */hasEdge(v,w,name){var e=arguments.length===1?edgeObjToId(this._isDirected,arguments[0]):edgeArgsToId(this._isDirected,v,w,name);return this._edgeLabels.hasOwnProperty(e)} +/** + * Removes the specified edge from the graph. No subgraphs are considered. + * Complexity: O(1). + */removeEdge(v,w,name){var e=arguments.length===1?edgeObjToId(this._isDirected,arguments[0]):edgeArgsToId(this._isDirected,v,w,name);var edge=this._edgeObjs[e];if(edge){v=edge.v;w=edge.w;delete this._edgeLabels[e];delete this._edgeObjs[e];decrementOrRemoveEntry(this._preds[w],v);decrementOrRemoveEntry(this._sucs[v],w);delete this._in[w][e];delete this._out[v][e];this._edgeCount--}return this} +/** + * Return all edges that point to the node v. Optionally filters those edges down to just those + * coming from node u. Behavior is undefined for undirected graphs - use nodeEdges instead. + * Complexity: O(|E|). + */inEdges(v,u){var inV=this._in[v];if(inV){var edges=Object.values(inV);if(!u){return edges}return edges.filter(edge=>edge.v===u)}} +/** + * Return all edges that are pointed at by node v. Optionally filters those edges down to just + * those point to w. Behavior is undefined for undirected graphs - use nodeEdges instead. + * Complexity: O(|E|). + */outEdges(v,w){var outV=this._out[v];if(outV){var edges=Object.values(outV);if(!w){return edges}return edges.filter(edge=>edge.w===w)}} +/** + * Returns all edges to or from node v regardless of direction. Optionally filters those edges + * down to just those between nodes v and w regardless of direction. + * Complexity: O(|E|). + */nodeEdges(v,w){var inEdges=this.inEdges(v,w);if(inEdges){return inEdges.concat(this.outEdges(v,w))}}}function incrementOrInitEntry(map,k){if(map[k]){map[k]++}else{map[k]=1}}function decrementOrRemoveEntry(map,k){if(!--map[k]){delete map[k]}}function edgeArgsToId(isDirected,v_,w_,name){var v=""+v_;var w=""+w_;if(!isDirected&&v>w){var tmp=v;v=w;w=tmp}return v+EDGE_KEY_DELIM+w+EDGE_KEY_DELIM+(name===undefined?DEFAULT_EDGE_NAME:name)}function edgeArgsToObj(isDirected,v_,w_,name){var v=""+v_;var w=""+w_;if(!isDirected&&v>w){var tmp=v;v=w;w=tmp}var edgeObj={v:v,w:w};if(name){edgeObj.name=name}return edgeObj}function edgeObjToId(isDirected,edgeObj){return edgeArgsToId(isDirected,edgeObj.v,edgeObj.w,edgeObj.name)}module.exports=Graph},{}],17:[function(require,module,exports){ +// Includes only the "core" of graphlib +module.exports={Graph:require("./graph"),version:require("./version")}},{"./graph":16,"./version":19}],18:[function(require,module,exports){var Graph=require("./graph");module.exports={write:write,read:read}; +/** + * Creates a JSON representation of the graph that can be serialized to a string with + * JSON.stringify. The graph can later be restored using json.read. + */function write(g){var json={options:{directed:g.isDirected(),multigraph:g.isMultigraph(),compound:g.isCompound()},nodes:writeNodes(g),edges:writeEdges(g)};if(g.graph()!==undefined){json.value=structuredClone(g.graph())}return json}function writeNodes(g){return g.nodes().map(function(v){var nodeValue=g.node(v);var parent=g.parent(v);var node={v:v};if(nodeValue!==undefined){node.value=nodeValue}if(parent!==undefined){node.parent=parent}return node})}function writeEdges(g){return g.edges().map(function(e){var edgeValue=g.edge(e);var edge={v:e.v,w:e.w};if(e.name!==undefined){edge.name=e.name}if(edgeValue!==undefined){edge.value=edgeValue}return edge})} +/** + * Takes JSON as input and returns the graph representation. + * + * @example + * var g2 = graphlib.json.read(JSON.parse(str)); + * g2.nodes(); + * // ['a', 'b'] + * g2.edges() + * // [ { v: 'a', w: 'b' } ] + */function read(json){var g=new Graph(json.options).setGraph(json.value);json.nodes.forEach(function(entry){g.setNode(entry.v,entry.value);if(entry.parent){g.setParent(entry.v,entry.parent)}});json.edges.forEach(function(entry){g.setEdge({v:entry.v,w:entry.w,name:entry.name},entry.value)});return g}},{"./graph":16}],19:[function(require,module,exports){module.exports="2.2.3"},{}]},{},[1])(1)});