-
Notifications
You must be signed in to change notification settings - Fork 22
/
utils.py
126 lines (106 loc) · 3.72 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import torch
import numpy as np
def convert_rgb_to_y(img, dim_order='hwc'):
if dim_order == 'hwc':
return 16. + (64.738 * img[..., 0] + 129.057 * img[..., 1] + 25.064 * img[..., 2]) / 256.
else:
return 16. + (64.738 * img[0] + 129.057 * img[1] + 25.064 * img[2]) / 256.
def denormalize(img):
img = img.mul(255.0).clamp(0.0, 255.0)
return img
def preprocess(img, device):
img = np.array(img).astype(np.float32)
ycbcr = convert_rgb_to_y(img)
x = ycbcr[..., 0]
x /= 255.
x = torch.from_numpy(x).to(device)
x = x.unsqueeze(0).unsqueeze(0)
return x, ycbcr
def calc_psnr_for_eachimg(img1, img2, max=255.0):
return 10. * np.log10((max ** 2) / ((img1 - img2) ** 2).mean())
def calc_ssim_for_eachimg(img1, img2):
'''calculate SSIM
the same outputs as MATLAB's
img1, img2: [0, 255]
'''
if not img1.shape == img2.shape:
raise ValueError('Input images must have the same dimensions.')
if img1.ndim == 2:
return ssim(img1, img2)
elif img1.ndim == 3:
if img1.shape[2] == 3:
ssims = []
for i in range(3):
ssims.append(ssim(img1, img2))
return np.array(ssims).mean()
elif img1.shape[2] == 1:
return ssim(np.squeeze(img1), np.squeeze(img2))
else:
raise ValueError('Wrong input image dimensions.')
def calc_psnr(img1, img2, max=255.0):
return 10. * ((max ** 2) / ((img1 - img2) ** 2).mean()).log10()
class AverageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
import cv2
def ssim(img1, img2):
C1 = (0.01 * 255)**2
C2 = (0.03 * 255)**2
img1 = img1.astype(np.float64)
img2 = img2.astype(np.float64)
kernel = cv2.getGaussianKernel(11, 1.5)
window = np.outer(kernel, kernel.transpose())
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
mu1_sq = mu1**2
mu2_sq = mu2**2
mu1_mu2 = mu1 * mu2
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
(sigma1_sq + sigma2_sq + C2))
return ssim_map.mean()
def calc_ssim(img1, img2):
'''calculate SSIM
the same outputs as MATLAB's
img1, img2: [0, 255]
'''
img1=img1.cpu().numpy()
img2 = img2.cpu().numpy()
if not img1.shape == img2.shape:
raise ValueError('Input images must have the same dimensions.')
if img1.ndim == 2:
return ssim(img1, img2)
elif img1.ndim == 3:
if img1.shape[2] == 3:
ssims = []
for i in range(3):
ssims.append(ssim(img1, img2))
return np.array(ssims).mean()
elif img1.shape[2] == 1:
return ssim(np.squeeze(img1), np.squeeze(img2))
else:
raise ValueError('Wrong input image dimensions.')
def SSIMnp(y_true, y_pred):
u_true = np.mean(y_true)
u_pred = np.mean(y_pred)
var_true = np.var(y_true)
var_pred = np.var(y_pred)
std_true = np.sqrt(var_true)
std_pred = np.sqrt(var_pred)
c1 = np.square(0.01 * 7)
c2 = np.square(0.03 * 7)
ssim = (2 * u_true * u_pred + c1) * (2 * std_pred * std_true + c2)
denom = (u_true ** 2 + u_pred ** 2 + c1) * (var_pred + var_true + c2)
return ssim / denom