-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathindex.ts
211 lines (179 loc) · 5.69 KB
/
index.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
/**
* @preserve
* Copyright 2015 Igor Bezkrovny
* All rights reserved. (MIT Licensed)
*
* ssim.ts - part of Image Quantization Library
*/
/**
* - Original TypeScript implementation:
* https://github.com/igor-bezkrovny/image-quantization/blob/9f62764ac047c3e53accdf1d7e4e424b0ef2fb60/src/quality/ssim.ts
* - Based on Java implementation: https://github.com/rhys-e/structural-similarity
* - For more information see: http://en.wikipedia.org/wiki/Structural_similarity
*/
module ImageSSIM {
'use strict';
export type Data = number[]|any[]|Uint8Array;
/**
* Grey = 1, GreyAlpha = 2, RGB = 3, RGBAlpha = 4
*/
export enum Channels {
Grey = 1,
GreyAlpha = 2,
RGB = 3,
RGBAlpha = 4
}
export interface IImage {
data:Data;
width:number;
height:number;
channels:Channels;
}
export interface IResult {
ssim:number;
mcs:number;
}
/**
* Entry point.
* @throws new Error('Images have different sizes!')
*/
export function compare(image1:IImage,
image2:IImage,
windowSize:number = 8,
K1:number = 0.01,
K2:number = 0.03,
luminance:boolean = true,
bitsPerComponent:number = 8):IResult {
if (image1.width !== image2.width ||
image1.height !== image2.height) {
throw new Error('Images have different sizes!');
}
/* tslint:disable:no-bitwise */
var L:number = (1 << bitsPerComponent) - 1;
/* tslint:enable:no-bitwise */
var c1:number = Math.pow((K1 * L), 2),
c2:number = Math.pow((K2 * L), 2),
numWindows:number = 0,
mssim:number = 0.0;
var mcs:number = 0.0;
function iteration(lumaValues1:number[],
lumaValues2:number[],
averageLumaValue1:number,
averageLumaValue2:number):void {
// calculate variance and covariance
var sigxy:number,
sigsqx:number,
sigsqy:number;
sigxy = sigsqx = sigsqy = 0.0;
for (var i:number = 0; i < lumaValues1.length; i++) {
sigsqx += Math.pow((lumaValues1[i] - averageLumaValue1), 2);
sigsqy += Math.pow((lumaValues2[i] - averageLumaValue2), 2);
sigxy += (lumaValues1[i] - averageLumaValue1) * (lumaValues2[i] - averageLumaValue2);
}
var numPixelsInWin:number = lumaValues1.length - 1;
sigsqx /= numPixelsInWin;
sigsqy /= numPixelsInWin;
sigxy /= numPixelsInWin;
// perform ssim calculation on window
var numerator:number = (2 * averageLumaValue1 * averageLumaValue2 + c1) * (2 * sigxy + c2);
var denominator:number = (Math.pow(averageLumaValue1, 2) +
Math.pow(averageLumaValue2, 2) + c1) * (sigsqx + sigsqy + c2);
mssim += numerator / denominator;
mcs += (2 * sigxy + c2) / (sigsqx + sigsqy + c2);
numWindows++;
}
// calculate SSIM for each window
Internals._iterate(image1, image2, windowSize, luminance, iteration);
return {ssim: mssim / numWindows, mcs: mcs / numWindows};
}
/**
* Internal functions.
*/
module Internals {
export function _iterate(image1:IImage,
image2:IImage,
windowSize:number,
luminance:boolean,
callback:(lumaValues1:number[],
lumaValues2:number[],
averageLumaValue1:number,
averageLumaValue2:number) => void):void {
var width:number = image1.width,
height:number = image1.height;
for (var y:number = 0; y < height; y += windowSize) {
for (var x:number = 0; x < width; x += windowSize) {
// avoid out-of-width/height
var windowWidth:number = Math.min(windowSize, width - x),
windowHeight:number = Math.min(windowSize, height - y);
var lumaValues1:number[] = _lumaValuesForWindow(image1, x, y, windowWidth, windowHeight, luminance),
lumaValues2:number[] = _lumaValuesForWindow(image2, x, y, windowWidth, windowHeight, luminance),
averageLuma1:number = _averageLuma(lumaValues1),
averageLuma2:number = _averageLuma(lumaValues2);
callback(lumaValues1, lumaValues2, averageLuma1, averageLuma2);
}
}
}
function _lumaValuesForWindow(image:IImage,
x:number,
y:number,
width:number,
height:number,
luminance:boolean):number[] {
var array:Data = image.data,
lumaValues:number[] = <any>new Float32Array(new ArrayBuffer(width * height * 4)),
counter:number = 0;
var maxj:number = y + height;
for (var j:number = y; j < maxj; j++) {
var offset:number = j * image.width;
var i:number = (offset + x) * image.channels;
var maxi:number = (offset + x + width) * image.channels;
switch (image.channels) {
case Channels.Grey:
while (i < maxi) {
// (0.212655 + 0.715158 + 0.072187) === 1
lumaValues[counter++] = array[i++];
}
break;
case Channels.GreyAlpha:
while (i < maxi) {
lumaValues[counter++] = array[i++] * (array[i++] / 255);
}
break;
case Channels.RGB:
if (luminance) {
while (i < maxi) {
lumaValues[counter++] = (array[i++] * 0.212655 + array[i++] * 0.715158 + array[i++] * 0.072187);
}
} else {
while (i < maxi) {
lumaValues[counter++] = (array[i++] + array[i++] + array[i++]);
}
}
break;
case Channels.RGBAlpha:
if (luminance) {
while (i < maxi) {
lumaValues[counter++] = (array[i++] * 0.212655 + array[i++] * 0.715158 + array[i++] * 0.072187) *
(array[i++] / 255);
}
} else {
while (i < maxi) {
lumaValues[counter++] = (array[i++] + array[i++] + array[i++]) *
(array[i++] / 255);
}
}
break;
}
}
return lumaValues;
}
function _averageLuma(lumaValues:number[]):number {
var sumLuma:number = 0.0;
for (var i:number = 0; i < lumaValues.length; i++) {
sumLuma += lumaValues[i];
}
return sumLuma / lumaValues.length;
}
}
}
export = ImageSSIM;