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Q:  What are ensemble techniques? 
A:  Methods of improving classification accuracy by aggregating 
     predictions over several base classifiers. 
 
Ensembles are osten much more accurate than the base classifiers that 
compose them. NOTE 

 
These base classifiers 
are sometimes called 
weak learners. 
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In order for an ensemble classifier to outperform a single base 
classifier, the following conditions must be met: 
 
1)  the bc’s must be accurate: they must outperform random 
     guessing 
 
2)  the bc’s must be diverse: their misclassifications must occur on 
     different training examples 
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In order for an ensemble classifier to outperform a single base 
classifier, the following conditions must be met: 
 
1)  the bc’s must be accurate:  low bias 
 
2)  the bc’s must be diverse:  uncorrelated 

NOTE 

 
Ideally, we would also 
like the base classifiers 
to be unstable to 
variations in the training 
set. 
 
In other words, high 
variance. 
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NOTE 

 
dashed line = perfectly 
correlated bc’s (no 
improvement using 
ensemble) 
 
solid line = perfectly 
uncorrelated bc’s 
(some improvement for 
unbiased bc’s) 



II. PROBLEMS IN 
CLASSIFICATION 

INTRO TO DATA SCIENCE 



PROBLEMS IN CLASSIFICATION 15 

In any supervised learning task, our goal is to make predictions of the 
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In any supervised learning task, our goal is to make predictions of the 
true classification function f  by learning the classifier h. 
 
There are three main problems that can prevent this: 
 
- statistical problem 
- computational problem 
- representational problem 
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If the amount of training data available is small, the base classifier 
will have difficulty converging to h. 
 
An ensemble classifier can mitigate this problem by “averaging out” 
base classifier predictions to improve convergence. 
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NOTE 
 
The true function f is 
best approximated as 
an average of the base 
classifiers. 

source: http://www.cs.iastate.edu/~jtian/cs573/Papers/Dietterich-ensemble-00.pdf 
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Even with sufficient training data, it may still be computationally 
difficult to find the best classifier h. 
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complex (NP-complete). 
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Even with sufficient training data, it may still be computationally 
difficult to find the best classifier h. 
 
For example, if our base classifier is a decision tree, an exhaustive 
search of the hypothesis space of all possible classifiers is extremely 
complex (NP-complete). NOTE 

 
Recall that this is why 
we used a heuristic 
algorithm (greedy 
search). 
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Even with sufficient training data, it may still be computationally 
difficult to find the best classifier h. 
 
For example, if our base classifier is a decision tree, an exhaustive 
search of the hypothesis space of all possible classifiers is extremely 
complex (NP-complete). 
 
An ensemble composed of several BC’s with different starting points 
can provide a better approximation to f  than any individual BC. 
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NOTE 
 
The true function f is 
often best 
approximated by using 
several starting points 
to explore the 
hypothesis space. 
 

source: http://www.cs.iastate.edu/~jtian/cs573/Papers/Dietterich-ensemble-00.pdf 
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Sometimes f cannot be expressed in terms of our hypothesis at all. 
 
To illustrate this, suppose we use a decision tree as our base 
classifier. 
 
A decision tree works by forming a rectilinear partition of the feature 
space. 
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NOTE 
 
What is a rectilinear 
decision boundary? 
 
One whose segments 
are orthogonal to the x 
& y axes. 
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But what if f is a diagonal line? 
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But what if f is a diagonal line? 
 
Then it cannot be represented by finitely many rectilinear segments, 
and therefore the true decision boundary cannot be obtained by a 
decision tree classifier. 
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But what if f is a diagonal line? 
 
Then it cannot be represented by finitely many rectilinear segments, 
and therefore the true decision boundary cannot be obtained by a 
decision tree classifier. 
 
However, it may be still be possible to approximate f or even to 
expand the space of representable functions using ensemble methods. 
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NOTE 
 
An ensemble of 
decision trees can 
approximate a diagonal 
decision boundary. 



THE REPRESENTATIONAL PROBLEM – EXPANDING THE HYPOTHESIS SPACE 31 

NOTE 
 
Ensemble classifiers 
can be effective even if 
the true decision 
boundary lies outside 
the hypothesis space. 



CREATING AN ENSEMBLE PREDICTION 32 

Q:  How do you create an ensemble classifier? 
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Q:  How do you generate several base classifiers? 
A:   There are several ways to do this: 
 

 - manipulating the training set 
 - manipulating the output labels 
 - manipulating the learning algorithm itself 

 
We will talk about a few examples of each of these. 
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Bagging (bootstrap aggregating) is a method that involves 
manipulating the training set by resampling. 
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data using uniform weights (eg, a uniform sampling distribution). 
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Bagging (bootstrap aggregating) is a method that involves 
manipulating the training set by resampling. 
 
We learn k base classifiers on k different samples of training data.  
 
These samples are independently created by resampling the training 
data using uniform weights (eg, a uniform sampling distribution). 

NOTE 
 
Each training sample is 
the same size as the 
original training set. 

NOTE 
 
Resampling means that 
some training records 
may appear in a 
sample more than 
once, or even not at all. 
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Bagging (bootstrap aggregating) is a method that involves 
manipulating the training set by resampling. 
 
We learn k base classifiers on k different samples of training data.  
 
These samples are independently created by resampling the training 
data using uniform weights (eg, a uniform sampling distribution). 
 
The final prediction is made by taking a majority vote across bc’s. 
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Bagging reduces the variance in our generalization error by aggregating 
multiple base classifiers together (provided they satisfy our earlier 
requirements). 
 

If the base classifier is stable, then the ensemble error is primarily due to 
bc bias, and bagging may not be effective. 
 

Since each sample of training data is equally likely, bagging is not very 
susceptible to overfitting with noisy data. 
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Boosting is an iterative procedure that adaptively changes the 
sampling distribution of training records at each iteration. 
 

The first iteration uses uniform weights (like bagging). In subsequent 
iterations, the weights are adjusted to emphasize records that were 
misclassified in previous iterations. 
 

The final prediction is constructed by a weighted vote (where the 
weights for a bc depends on its training error). 

NOTE 

The bc’s focus more 
and more closely on 
records that are difficult 
to classify as the 
sequence of iterations 
progresses. 
 
Thus the bc’s are faced 
with progressively more 
difficult learning 
problems. 
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Like in bagging, sampling is done with replacement, and as a result 
some records may not appear in a given training sample. 
 

These omitted records will likely be misclassified, and given greater 
weight in subsequent iterations once the sampling distribution is 
updated. 
 

So even if a record is lest out at one stage, it will be emphasized later. 
NOTE 
AdaBoost is a popular 
boosting algorithm. 
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A random forest is an ensemble of decision trees that vote to determine the final 
classification. 
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A random forest is an ensemble of decision trees that vote to determine the final 
classification. 
 
There are many ways to get random trees. The most common is to take bootstrap 
training sets and also restrict tree growth to a random subset of features for each 
split. 
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A random forest is an ensemble of decision trees that vote to determine the final 
classification. 
 
There are many ways to get random trees. The most common is to take bootstrap 
training sets and also restrict tree growth to a random subset of features for each 
split. 
 
Other methods: Randomly generate quadratic features, randomly choose the exact 
feature to split on, sklearn’s “extremely random forest” technique, etc. 
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