-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtraincar.py
54 lines (42 loc) · 1.77 KB
/
traincar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import random
import traces
import seaborn as sns
from sensor import Sensor
from kalman import Reading
class TrainCar(object):
max_occupants = 120
occupant_range = range(0, max_occupants + 1)
def __init__(self, occupants=0, sensor_array=[]):
self.sigma = 0
self.occupants = occupants
self.sensor_array = sensor_array
def generate_occupancy(self, start=0, end=30, stations=5):
self.occupants_trace = traces.TimeSeries()
self.occupants_trace[start] = self.max_occupants / 2
self.occupants_trace[end] = 0
# at each station a certain number of people get on or off
minute = start
while minute < end:
minute += random.randint(5, 10)
current_val = self.occupants_trace[minute]
# new_val = max(0, int(random.gauss(current_val, 40)))
new_val = random.randint(0, self.max_occupants)
self.occupants_trace[minute] = new_val
return self.occupants_trace
def read_sensors(self, timestamp):
for sensor in self.sensor_array:
occupants = self.occupants_trace[timestamp]
yield Reading(sensor, occupants, timestamp)
def plot_experiment(self, **kwargs):
for i, sensor in enumerate(self.sensor_array):
color = sns.color_palette()[i]
sensor.color = color
sensor.plot_experiment(**kwargs)
def run_experiment(self, datapoints=1000):
"""Generates fake sensor data and trains the sensor"""
for sensor in self.sensor_array:
sensor_data = []
for _ in range(datapoints):
occupants = random.randrange(self.max_occupants + 1)
sensor_data.append((occupants, sensor.read(occupants)))
sensor.fit(sensor_data)