forked from zhirongw/deep-mrf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgmm_decoder.lua
130 lines (118 loc) · 5.86 KB
/
gmm_decoder.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
-- decode the gaussian mixture models to meaningful mean, cov, weights
--------------------------------------------------------------------------------
require 'nn'
require 'nngraph'
local layer, parent = torch.class('nn.GMMDecoder', 'nn.Module')
function layer:__init(pixel_size, num_mixtures)
parent.__init(self)
self.pixel_size = pixel_size
self.num_mixtures = num_mixtures
if self.pixel_size == 3 then
self.output_size = self.num_mixtures * (3+3+3+1) + 1
else
self.output_size = self.num_mixtures * (1+1+0+1) + 1
end
self.var_exp = nn.Exp()
self.var_mm = nn.MM() -- supports batch mode operations
if pixel_size == 3 then self.cov_tanh = nn.Tanh() end
self.w_softmax = nn.SoftMax()
end
--[[
input: NxG Mixture of Gaussian Encodings plus 1 end-token
returns a table of (mean, cov matrix, weights, end)
--]]
function layer:updateOutput(input)
assert(input:size(2) == self.output_size, 'The length of input encodings do not match with pixel size')
self.output = {}
batch_size = input:size(1)
-- mean undertake no changes
local g_mean = input:narrow(2,1,self.num_mixtures*self.pixel_size):clone()
g_mean = g_mean:view(batch_size, self.num_mixtures, self.pixel_size)
table.insert(self.output, g_mean)
-- variance should be positive, exponentials
local g_var = self.var_exp:forward(input:narrow(2,self.num_mixtures*self.pixel_size+1,self.num_mixtures*self.pixel_size))
local g_var_mat = self.var_mm:forward({g_var:view(batch_size*self.num_mixtures, -1, 1), g_var:view(batch_size*self.num_mixtures, 1, -1)})
g_var_mat = g_var_mat:view(batch_size, self.num_mixtures, self.pixel_size, self.pixel_size)
--self.g_var = g_var
--self.g_var_mat = g_var_mat
-- covariance coeffs should be (-1,1), tanhs.
local p = 2
if self.pixel_size == 3 then
local g_cov = self.cov_tanh:forward(input:narrow(2,p*self.num_mixtures*self.pixel_size+1,self.num_mixtures*self.pixel_size))
p = p + 1
g_cov = g_cov:view(batch_size, self.num_mixtures, 3)
local cov_mat = torch.Tensor(batch_size, self.num_mixtures, 3, 3):fill(1):type(g_cov:type())
cov_mat[{{}, {}, 1, 2}] = g_cov[{{}, {}, 1}]
cov_mat[{{}, {}, 2, 1}] = g_cov[{{}, {}, 1}]
cov_mat[{{}, {}, 1, 3}] = g_cov[{{}, {}, 2}]
cov_mat[{{}, {}, 3, 1}] = g_cov[{{}, {}, 2}]
cov_mat[{{}, {}, 2, 3}] = g_cov[{{}, {}, 3}]
cov_mat[{{}, {}, 3, 2}] = g_cov[{{}, {}, 3}]
--self.cov_mat = cov_mat
g_var_mat:cmul(cov_mat)
end
table.insert(self.output, g_var_mat)
-- weights coeffs is taken care of at final loss, for computation efficiency and stability
local g_w = self.w_softmax:forward(input:narrow(2,p*self.num_mixtures*self.pixel_size+1,self.num_mixtures))
table.insert(self.output, g_w)
-- border is a single scalar indicator
table.insert(self.output, input[{{},-1}])
return self.output
end
--[[
input: NxG Mixture of Gaussian Encodings plus 1 end-token
gradOuput: a table of (mean, cov matrix, weights, end)
--]]
function layer:updateGradInput(input, gradOutput)
-- mean undertake no changes
local dg_mean = gradOutput[1]:view(batch_size, -1)
-- for variance and covariance matrix
-- g_var, g_var_mat, cov_mat should be recalculated
-- variance should be positive, exponentials
local g_var = self.var_exp:forward(input:narrow(2,self.num_mixtures*self.pixel_size+1,self.num_mixtures*self.pixel_size))
local g_var_mat = self.var_mm:forward({g_var:view(batch_size*self.num_mixtures, -1, 1), g_var:view(batch_size*self.num_mixtures, 1, -1)})
g_var_mat = g_var_mat:view(batch_size, self.num_mixtures, self.pixel_size, self.pixel_size)
local dg_cov
local dvar_mat
local p = 2
if self.pixel_size == 3 then
local dcov_mat = torch.cmul(gradOutput[2], g_var_mat)
dg_cov = torch.Tensor(batch_size, self.num_mixtures, 3):type(dcov_mat:type())
dg_cov[{{}, {}, 1}] = dcov_mat[{{},{},1,2}] + dcov_mat[{{},{},2,1}]
dg_cov[{{}, {}, 2}] = dcov_mat[{{},{},1,3}] + dcov_mat[{{},{},3,1}]
dg_cov[{{}, {}, 3}] = dcov_mat[{{},{},2,3}] + dcov_mat[{{},{},3,2}]
dg_cov = dg_cov:view(batch_size, -1)
dg_cov = self.cov_tanh:backward(input:narrow(2,p*self.num_mixtures*self.pixel_size+1,self.num_mixtures*self.pixel_size), dg_cov)
local g_cov = self.cov_tanh:forward(input:narrow(2,p*self.num_mixtures*self.pixel_size+1,self.num_mixtures*self.pixel_size))
p = p + 1
g_cov = g_cov:view(batch_size, self.num_mixtures, 3)
local cov_mat = torch.Tensor(batch_size, self.num_mixtures, 3, 3):fill(1):type(g_cov:type())
cov_mat[{{}, {}, 1, 2}] = g_cov[{{}, {}, 1}]
cov_mat[{{}, {}, 2, 1}] = g_cov[{{}, {}, 1}]
cov_mat[{{}, {}, 1, 3}] = g_cov[{{}, {}, 2}]
cov_mat[{{}, {}, 3, 1}] = g_cov[{{}, {}, 2}]
cov_mat[{{}, {}, 2, 3}] = g_cov[{{}, {}, 3}]
cov_mat[{{}, {}, 3, 2}] = g_cov[{{}, {}, 3}]
dvar_mat = torch.cmul(gradOutput[2], cov_mat)
dvar_mat = dvar_mat:view(batch_size*self.num_mixtures, self.pixel_size, self.pixel_size)
else
dvar_mat = gradOutput[2]
dvar_mat = dvar_mat:view(batch_size*self.num_mixtures, self.pixel_size, self.pixel_size)
end
local dg_var = self.var_mm:backward({g_var:view(batch_size*self.num_mixtures, -1, 1), g_var:view(batch_size*self.num_mixtures, 1, -1)}, dvar_mat)
dg_var = torch.add(dg_var[1], 1, dg_var[2])
-- dg_var = dg_var[1] * 2
dg_var = dg_var:view(batch_size, -1)
dg_var = self.var_exp:backward(input:narrow(2,self.num_mixtures*self.pixel_size+1,self.num_mixtures*self.pixel_size), dg_var)
-- weights coeffs should be normalized to one
local dg_w = self.w_softmax:backward(input:narrow(2,p*self.num_mixtures*self.pixel_size+1, self.num_mixtures), gradOutput[3])
-- border is a single scalar indicator
local d_border = gradOutput[4]
-- concat to gradInput
if self.pixel_size == 3 then
self.gradInput = torch.cat(torch.cat(torch.cat(dg_mean, dg_var), torch.cat(dg_cov, dg_w)), d_border)
else
self.gradInput = torch.cat(torch.cat(dg_mean, dg_var), torch.cat(dg_w, d_border))
end
return self.gradInput
end