-
Notifications
You must be signed in to change notification settings - Fork 163
/
Copy pathconnections.py
722 lines (590 loc) · 24.9 KB
/
connections.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
import json
import re
from contextlib import contextmanager
from dataclasses import dataclass
from functools import lru_cache
import agate
from requests.exceptions import ConnectionError
from typing import Optional, Any, Dict, Tuple
import google.auth
import google.auth.exceptions
import google.cloud.bigquery
import google.cloud.exceptions
from google.api_core import retry, client_info
from google.auth import impersonated_credentials
from google.oauth2 import (
credentials as GoogleCredentials,
service_account as GoogleServiceAccountCredentials,
)
from dbt.adapters.bigquery import gcloud
from dbt.clients import agate_helper
from dbt.config.profile import INVALID_PROFILE_MESSAGE
from dbt.tracking import active_user
from dbt.contracts.connection import ConnectionState, AdapterResponse
from dbt.exceptions import (
FailedToConnectException,
RuntimeException,
DatabaseException,
DbtProfileError,
)
from dbt.adapters.base import BaseConnectionManager, Credentials
from dbt.events import AdapterLogger
from dbt.events.functions import fire_event
from dbt.events.types import SQLQuery
from dbt.version import __version__ as dbt_version
from dbt.dataclass_schema import StrEnum
logger = AdapterLogger("BigQuery")
BQ_QUERY_JOB_SPLIT = "-----Query Job SQL Follows-----"
WRITE_TRUNCATE = google.cloud.bigquery.job.WriteDisposition.WRITE_TRUNCATE
REOPENABLE_ERRORS = (
ConnectionResetError,
ConnectionError,
)
RETRYABLE_ERRORS = (
google.cloud.exceptions.ServerError,
google.cloud.exceptions.BadRequest,
ConnectionResetError,
ConnectionError,
)
@lru_cache()
def get_bigquery_defaults(scopes=None) -> Tuple[Any, Optional[str]]:
"""
Returns (credentials, project_id)
project_id is returned available from the environment; otherwise None
"""
# Cached, because the underlying implementation shells out, taking ~1s
try:
credentials, _ = google.auth.default(scopes=scopes)
return credentials, _
except google.auth.exceptions.DefaultCredentialsError as e:
raise DbtProfileError(INVALID_PROFILE_MESSAGE.format(error_string=e))
class Priority(StrEnum):
Interactive = "interactive"
Batch = "batch"
class BigQueryConnectionMethod(StrEnum):
OAUTH = "oauth"
SERVICE_ACCOUNT = "service-account"
SERVICE_ACCOUNT_JSON = "service-account-json"
OAUTH_SECRETS = "oauth-secrets"
@dataclass
class BigQueryAdapterResponse(AdapterResponse):
bytes_processed: Optional[int] = None
location: Optional[str] = None
project_id: Optional[str] = None
job_id: Optional[str] = None
slot_ms: Optional[int] = None
@dataclass
class BigQueryCredentials(Credentials):
method: BigQueryConnectionMethod
# BigQuery allows an empty database / project, where it defers to the
# environment for the project
database: Optional[str] # type: ignore
execution_project: Optional[str] = None
location: Optional[str] = None
priority: Optional[Priority] = None
maximum_bytes_billed: Optional[int] = None
impersonate_service_account: Optional[str] = None
job_retry_deadline_seconds: Optional[int] = None
job_retries: Optional[int] = 1
job_creation_timeout_seconds: Optional[int] = None
job_execution_timeout_seconds: Optional[int] = None
# Keyfile json creds
keyfile: Optional[str] = None
keyfile_json: Optional[Dict[str, Any]] = None
# oauth-secrets
token: Optional[str] = None
refresh_token: Optional[str] = None
client_id: Optional[str] = None
client_secret: Optional[str] = None
token_uri: Optional[str] = None
dataproc_region: Optional[str] = None
dataproc_cluster_name: Optional[str] = None
gcs_bucket: Optional[str] = None
scopes: Optional[Tuple[str, ...]] = (
"https://www.googleapis.com/auth/bigquery",
"https://www.googleapis.com/auth/cloud-platform",
"https://www.googleapis.com/auth/drive",
)
_ALIASES = {
# 'legacy_name': 'current_name'
"project": "database",
"dataset": "schema",
"target_project": "target_database",
"target_dataset": "target_schema",
"retries": "job_retries",
"timeout_seconds": "job_execution_timeout_seconds",
}
@property
def type(self):
return "bigquery"
@property
def unique_field(self):
return self.database
def _connection_keys(self):
return (
"method",
"database",
"schema",
"location",
"priority",
"timeout_seconds",
"maximum_bytes_billed",
"execution_project",
"job_retry_deadline_seconds",
"job_retries",
"job_creation_timeout_seconds",
"job_execution_timeout_seconds",
"gcs_bucket",
)
@classmethod
def __pre_deserialize__(cls, d: Dict[Any, Any]) -> Dict[Any, Any]:
# We need to inject the correct value of the database (aka project) at
# this stage, ref
# https://github.com/dbt-labs/dbt/pull/2908#discussion_r532927436.
# `database` is an alias of `project` in BigQuery
if "database" not in d:
_, database = get_bigquery_defaults()
d["database"] = database
# `execution_project` default to dataset/project
if "execution_project" not in d:
d["execution_project"] = d["database"]
return d
class BigQueryConnectionManager(BaseConnectionManager):
TYPE = "bigquery"
DEFAULT_INITIAL_DELAY = 1.0 # Seconds
DEFAULT_MAXIMUM_DELAY = 3.0 # Seconds
@classmethod
def handle_error(cls, error, message):
error_msg = "\n".join([item["message"] for item in error.errors])
if hasattr(error, "query_job"):
logger.error(
cls._bq_job_link(
error.query_job.location, error.query_job.project, error.query_job.job_id
)
)
raise DatabaseException(error_msg)
def clear_transaction(self):
pass
@contextmanager
def exception_handler(self, sql):
try:
yield
except google.cloud.exceptions.BadRequest as e:
message = "Bad request while running query"
self.handle_error(e, message)
except google.cloud.exceptions.Forbidden as e:
message = "Access denied while running query"
self.handle_error(e, message)
except google.auth.exceptions.RefreshError as e:
message = (
"Unable to generate access token, if you're using "
"impersonate_service_account, make sure your "
'initial account has the "roles/'
'iam.serviceAccountTokenCreator" role on the '
"account you are trying to impersonate.\n\n"
f"{str(e)}"
)
raise RuntimeException(message)
except Exception as e:
logger.debug("Unhandled error while running:\n{}".format(sql))
logger.debug(e)
if isinstance(e, RuntimeException):
# during a sql query, an internal to dbt exception was raised.
# this sounds a lot like a signal handler and probably has
# useful information, so raise it without modification.
raise
exc_message = str(e)
# the google bigquery library likes to add the query log, which we
# don't want to log. Hopefully they never change this!
if BQ_QUERY_JOB_SPLIT in exc_message:
exc_message = exc_message.split(BQ_QUERY_JOB_SPLIT)[0].strip()
raise RuntimeException(exc_message)
def cancel_open(self) -> None:
pass
@classmethod
def close(cls, connection):
connection.state = ConnectionState.CLOSED
return connection
def begin(self):
pass
def commit(self):
pass
def format_bytes(self, num_bytes):
if num_bytes:
for unit in ["Bytes", "KB", "MB", "GB", "TB", "PB"]:
if abs(num_bytes) < 1024.0:
return f"{num_bytes:3.1f} {unit}"
num_bytes /= 1024.0
num_bytes *= 1024.0
return f"{num_bytes:3.1f} {unit}"
else:
return num_bytes
def format_rows_number(self, rows_number):
for unit in ["", "k", "m", "b", "t"]:
if abs(rows_number) < 1000.0:
return f"{rows_number:3.1f}{unit}".strip()
rows_number /= 1000.0
rows_number *= 1000.0
return f"{rows_number:3.1f}{unit}".strip()
@classmethod
def get_google_credentials(cls, profile_credentials) -> GoogleCredentials:
method = profile_credentials.method
creds = GoogleServiceAccountCredentials.Credentials
if method == BigQueryConnectionMethod.OAUTH:
credentials, _ = get_bigquery_defaults(scopes=profile_credentials.scopes)
return credentials
elif method == BigQueryConnectionMethod.SERVICE_ACCOUNT:
keyfile = profile_credentials.keyfile
return creds.from_service_account_file(keyfile, scopes=profile_credentials.scopes)
elif method == BigQueryConnectionMethod.SERVICE_ACCOUNT_JSON:
details = profile_credentials.keyfile_json
return creds.from_service_account_info(details, scopes=profile_credentials.scopes)
elif method == BigQueryConnectionMethod.OAUTH_SECRETS:
return GoogleCredentials.Credentials(
token=profile_credentials.token,
refresh_token=profile_credentials.refresh_token,
client_id=profile_credentials.client_id,
client_secret=profile_credentials.client_secret,
token_uri=profile_credentials.token_uri,
scopes=profile_credentials.scopes,
)
error = 'Invalid `method` in profile: "{}"'.format(method)
raise FailedToConnectException(error)
@classmethod
def get_impersonated_credentials(cls, profile_credentials):
source_credentials = cls.get_google_credentials(profile_credentials)
return impersonated_credentials.Credentials(
source_credentials=source_credentials,
target_principal=profile_credentials.impersonate_service_account,
target_scopes=list(profile_credentials.scopes),
lifetime=(profile_credentials.job_execution_timeout_seconds or 300),
)
@classmethod
def get_credentials(cls, profile_credentials):
if profile_credentials.impersonate_service_account:
return cls.get_impersonated_credentials(profile_credentials)
else:
return cls.get_google_credentials(profile_credentials)
@classmethod
def get_bigquery_client(cls, profile_credentials):
creds = cls.get_credentials(profile_credentials)
execution_project = profile_credentials.execution_project
location = getattr(profile_credentials, "location", None)
info = client_info.ClientInfo(user_agent=f"dbt-{dbt_version}")
return google.cloud.bigquery.Client(
execution_project,
creds,
location=location,
client_info=info,
)
@classmethod
def open(cls, connection):
if connection.state == "open":
logger.debug("Connection is already open, skipping open.")
return connection
try:
handle = cls.get_bigquery_client(connection.credentials)
except google.auth.exceptions.DefaultCredentialsError:
logger.info("Please log into GCP to continue")
gcloud.setup_default_credentials()
handle = cls.get_bigquery_client(connection.credentials)
except Exception as e:
logger.debug(
"Got an error when attempting to create a bigquery " "client: '{}'".format(e)
)
connection.handle = None
connection.state = "fail"
raise FailedToConnectException(str(e))
connection.handle = handle
connection.state = "open"
return connection
@classmethod
def get_job_execution_timeout_seconds(cls, conn):
credentials = conn.credentials
return credentials.job_execution_timeout_seconds
@classmethod
def get_job_retries(cls, conn) -> int:
credentials = conn.credentials
return credentials.job_retries
@classmethod
def get_job_creation_timeout_seconds(cls, conn):
credentials = conn.credentials
return credentials.job_creation_timeout_seconds
@classmethod
def get_job_retry_deadline_seconds(cls, conn):
credentials = conn.credentials
return credentials.job_retry_deadline_seconds
@classmethod
def get_table_from_response(cls, resp):
column_names = [field.name for field in resp.schema]
return agate_helper.table_from_data_flat(resp, column_names)
def raw_execute(self, sql, fetch=False, *, use_legacy_sql=False):
conn = self.get_thread_connection()
client = conn.handle
fire_event(SQLQuery(conn_name=conn.name, sql=sql))
if (
hasattr(self.profile, "query_comment")
and self.profile.query_comment
and self.profile.query_comment.job_label
):
query_comment = self.query_header.comment.query_comment
labels = self._labels_from_query_comment(query_comment)
else:
labels = {}
if active_user:
labels["dbt_invocation_id"] = active_user.invocation_id
job_params = {"use_legacy_sql": use_legacy_sql, "labels": labels}
priority = conn.credentials.priority
if priority == Priority.Batch:
job_params["priority"] = google.cloud.bigquery.QueryPriority.BATCH
else:
job_params["priority"] = google.cloud.bigquery.QueryPriority.INTERACTIVE
maximum_bytes_billed = conn.credentials.maximum_bytes_billed
if maximum_bytes_billed is not None and maximum_bytes_billed != 0:
job_params["maximum_bytes_billed"] = maximum_bytes_billed
job_creation_timeout = self.get_job_creation_timeout_seconds(conn)
job_execution_timeout = self.get_job_execution_timeout_seconds(conn)
def fn():
return self._query_and_results(
client,
sql,
job_params,
job_creation_timeout=job_creation_timeout,
job_execution_timeout=job_execution_timeout,
)
query_job, iterator = self._retry_and_handle(msg=sql, conn=conn, fn=fn)
return query_job, iterator
def execute(
self, sql, auto_begin=False, fetch=None
) -> Tuple[BigQueryAdapterResponse, agate.Table]:
sql = self._add_query_comment(sql)
# auto_begin is ignored on bigquery, and only included for consistency
query_job, iterator = self.raw_execute(sql, fetch=fetch)
if fetch:
table = self.get_table_from_response(iterator)
else:
table = agate_helper.empty_table()
message = "OK"
code = None
num_rows = None
bytes_processed = None
location = None
job_id = None
project_id = None
num_rows_formatted = None
processed_bytes = None
slot_ms = None
if query_job.statement_type == "CREATE_VIEW":
code = "CREATE VIEW"
elif query_job.statement_type == "CREATE_TABLE_AS_SELECT":
code = "CREATE TABLE"
conn = self.get_thread_connection()
client = conn.handle
query_table = client.get_table(query_job.destination)
num_rows = query_table.num_rows
elif query_job.statement_type == "SCRIPT":
code = "SCRIPT"
elif query_job.statement_type in ["INSERT", "DELETE", "MERGE", "UPDATE"]:
code = query_job.statement_type
num_rows = query_job.num_dml_affected_rows
elif query_job.statement_type == "SELECT":
code = "SELECT"
conn = self.get_thread_connection()
client = conn.handle
# use anonymous table for num_rows
query_table = client.get_table(query_job.destination)
num_rows = query_table.num_rows
# set common attributes
bytes_processed = query_job.total_bytes_processed
slot_ms = query_job.slot_millis
processed_bytes = self.format_bytes(bytes_processed)
location = query_job.location
job_id = query_job.job_id
project_id = query_job.project
if num_rows is not None:
num_rows_formatted = self.format_rows_number(num_rows)
message = f"{code} ({num_rows_formatted} rows, {processed_bytes} processed)"
elif bytes_processed is not None:
message = f"{code} ({processed_bytes} processed)"
else:
message = f"{code}"
if location is not None and job_id is not None and project_id is not None:
logger.debug(self._bq_job_link(location, project_id, job_id))
response = BigQueryAdapterResponse( # type: ignore[call-arg]
_message=message,
rows_affected=num_rows,
code=code,
bytes_processed=bytes_processed,
location=location,
project_id=project_id,
job_id=job_id,
slot_ms=slot_ms,
)
return response, table
@staticmethod
def _bq_job_link(location, project_id, job_id) -> str:
return f"https://console.cloud.google.com/bigquery?project={project_id}&j=bq:{location}:{job_id}&page=queryresults"
def get_partitions_metadata(self, table):
def standard_to_legacy(table):
return table.project + ":" + table.dataset + "." + table.identifier
legacy_sql = "SELECT * FROM [" + standard_to_legacy(table) + "$__PARTITIONS_SUMMARY__]"
sql = self._add_query_comment(legacy_sql)
# auto_begin is ignored on bigquery, and only included for consistency
_, iterator = self.raw_execute(sql, fetch="fetch_result", use_legacy_sql=True)
return self.get_table_from_response(iterator)
def copy_bq_table(self, source, destination, write_disposition):
conn = self.get_thread_connection()
client = conn.handle
# -------------------------------------------------------------------------------
# BigQuery allows to use copy API using two different formats:
# 1. client.copy_table(source_table_id, destination_table_id)
# where source_table_id = "your-project.source_dataset.source_table"
# 2. client.copy_table(source_table_ids, destination_table_id)
# where source_table_ids = ["your-project.your_dataset.your_table_name", ...]
# Let's use uniform function call and always pass list there
# -------------------------------------------------------------------------------
if type(source) is not list:
source = [source]
source_ref_array = [
self.table_ref(src_table.database, src_table.schema, src_table.table)
for src_table in source
]
destination_ref = self.table_ref(
destination.database, destination.schema, destination.table
)
logger.debug(
'Copying table(s) "{}" to "{}" with disposition: "{}"',
", ".join(source_ref.path for source_ref in source_ref_array),
destination_ref.path,
write_disposition,
)
def copy_and_results():
job_config = google.cloud.bigquery.CopyJobConfig(write_disposition=write_disposition)
copy_job = client.copy_table(source_ref_array, destination_ref, job_config=job_config)
timeout = self.get_job_execution_timeout_seconds(conn) or 300
iterator = copy_job.result(timeout=timeout)
return copy_job, iterator
self._retry_and_handle(
msg='copy table "{}" to "{}"'.format(
", ".join(source_ref.path for source_ref in source_ref_array),
destination_ref.path,
),
conn=conn,
fn=copy_and_results,
)
@staticmethod
def dataset_ref(database, schema):
return google.cloud.bigquery.DatasetReference(project=database, dataset_id=schema)
@staticmethod
def table_ref(database, schema, table_name):
dataset_ref = google.cloud.bigquery.DatasetReference(database, schema)
return google.cloud.bigquery.TableReference(dataset_ref, table_name)
def get_bq_table(self, database, schema, identifier):
"""Get a bigquery table for a schema/model."""
conn = self.get_thread_connection()
# backwards compatibility: fill in with defaults if not specified
database = database or conn.credentials.database
schema = schema or conn.credentials.schema
table_ref = self.table_ref(database, schema, identifier)
return conn.handle.get_table(table_ref)
def drop_dataset(self, database, schema):
conn = self.get_thread_connection()
dataset_ref = self.dataset_ref(database, schema)
client = conn.handle
def fn():
return client.delete_dataset(dataset_ref, delete_contents=True, not_found_ok=True)
self._retry_and_handle(msg="drop dataset", conn=conn, fn=fn)
def create_dataset(self, database, schema):
conn = self.get_thread_connection()
client = conn.handle
dataset_ref = self.dataset_ref(database, schema)
def fn():
return client.create_dataset(dataset_ref, exists_ok=True)
self._retry_and_handle(msg="create dataset", conn=conn, fn=fn)
def _query_and_results(
self,
client,
sql,
job_params,
job_creation_timeout=None,
job_execution_timeout=None,
):
"""Query the client and wait for results."""
# Cannot reuse job_config if destination is set and ddl is used
job_config = google.cloud.bigquery.QueryJobConfig(**job_params)
query_job = client.query(query=sql, job_config=job_config, timeout=job_creation_timeout)
iterator = query_job.result(timeout=job_execution_timeout)
return query_job, iterator
def _retry_and_handle(self, msg, conn, fn):
"""retry a function call within the context of exception_handler."""
def reopen_conn_on_error(error):
if isinstance(error, REOPENABLE_ERRORS):
logger.warning("Reopening connection after {!r}".format(error))
self.close(conn)
self.open(conn)
return
with self.exception_handler(msg):
return retry.retry_target(
target=fn,
predicate=_ErrorCounter(self.get_job_retries(conn)).count_error,
sleep_generator=self._retry_generator(),
deadline=self.get_job_retry_deadline_seconds(conn),
on_error=reopen_conn_on_error,
)
def _retry_generator(self):
"""Generates retry intervals that exponentially back off."""
return retry.exponential_sleep_generator(
initial=self.DEFAULT_INITIAL_DELAY, maximum=self.DEFAULT_MAXIMUM_DELAY
)
def _labels_from_query_comment(self, comment: str) -> Dict:
try:
comment_labels = json.loads(comment)
except (TypeError, ValueError):
return {"query_comment": _sanitize_label(comment)}
return {
_sanitize_label(key): _sanitize_label(str(value))
for key, value in comment_labels.items()
}
class _ErrorCounter(object):
"""Counts errors seen up to a threshold then raises the next error."""
def __init__(self, retries):
self.retries = retries
self.error_count = 0
def count_error(self, error):
if self.retries == 0:
return False # Don't log
self.error_count += 1
if _is_retryable(error) and self.error_count <= self.retries:
logger.debug(
"Retry attempt {} of {} after error: {}".format(
self.error_count, self.retries, repr(error)
)
)
return True
else:
return False
def _is_retryable(error):
"""Return true for errors that are unlikely to occur again if retried."""
if isinstance(error, RETRYABLE_ERRORS):
return True
elif isinstance(error, google.api_core.exceptions.Forbidden) and any(
e["reason"] == "rateLimitExceeded" for e in error.errors
):
return True
return False
_SANITIZE_LABEL_PATTERN = re.compile(r"[^a-z0-9_-]")
_VALIDATE_LABEL_LENGTH_LIMIT = 63
def _sanitize_label(value: str) -> str:
"""Return a legal value for a BigQuery label."""
value = value.strip().lower()
value = _SANITIZE_LABEL_PATTERN.sub("_", value)
value_length = len(value)
if value_length > _VALIDATE_LABEL_LENGTH_LIMIT:
error_msg = (
f"Job label length {value_length} is greater than length limit: "
f"{_VALIDATE_LABEL_LENGTH_LIMIT}\n"
f"Current sanitized label: {value}"
)
raise RuntimeException(error_msg)
else:
return value