-
Notifications
You must be signed in to change notification settings - Fork 1.7k
/
Copy pathrun.py
834 lines (723 loc) · 31.4 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
import functools
import threading
import time
from copy import deepcopy
from dataclasses import asdict
from datetime import datetime
from typing import AbstractSet, Any, Dict, Iterable, List, Optional, Set, Tuple, Type
from dbt import tracking, utils
from dbt.adapters.base import BaseAdapter, BaseRelation
from dbt.adapters.events.types import FinishedRunningStats
from dbt.adapters.exceptions import MissingMaterializationError
from dbt.artifacts.resources import Hook
from dbt.artifacts.schemas.batch_results import BatchResults, BatchType
from dbt.artifacts.schemas.results import (
NodeStatus,
RunningStatus,
RunStatus,
TimingInfo,
collect_timing_info,
)
from dbt.artifacts.schemas.run import RunResult
from dbt.cli.flags import Flags
from dbt.clients.jinja import MacroGenerator
from dbt.config import RuntimeConfig
from dbt.context.providers import generate_runtime_model_context
from dbt.contracts.graph.manifest import Manifest
from dbt.contracts.graph.nodes import HookNode, ModelNode, ResultNode
from dbt.events.types import (
LogHookEndLine,
LogHookStartLine,
LogModelResult,
LogStartLine,
RunningOperationCaughtError,
)
from dbt.exceptions import CompilationError, DbtInternalError, DbtRuntimeError
from dbt.graph import ResourceTypeSelector
from dbt.hooks import get_hook_dict
from dbt.materializations.incremental.microbatch import MicrobatchBuilder
from dbt.node_types import NodeType, RunHookType
from dbt.task import group_lookup
from dbt.task.base import BaseRunner
from dbt.task.compile import CompileRunner, CompileTask
from dbt.task.printer import get_counts, print_run_end_messages
from dbt_common.clients.jinja import MacroProtocol
from dbt_common.dataclass_schema import dbtClassMixin
from dbt_common.events.base_types import EventLevel
from dbt_common.events.contextvars import log_contextvars
from dbt_common.events.functions import fire_event, get_invocation_id
from dbt_common.events.types import Formatting
from dbt_common.exceptions import DbtValidationError
@functools.total_ordering
class BiggestName(str):
def __lt__(self, other):
return True
def __eq__(self, other):
return isinstance(other, self.__class__)
def _hook_list() -> List[HookNode]:
return []
def get_hooks_by_tags(
nodes: Iterable[ResultNode],
match_tags: Set[str],
) -> List[HookNode]:
matched_nodes = []
for node in nodes:
if not isinstance(node, HookNode):
continue
node_tags = node.tags
if len(set(node_tags) & match_tags):
matched_nodes.append(node)
return matched_nodes
def get_hook(source, index):
hook_dict = get_hook_dict(source)
hook_dict.setdefault("index", index)
Hook.validate(hook_dict)
return Hook.from_dict(hook_dict)
def get_execution_status(sql: str, adapter: BaseAdapter) -> Tuple[RunStatus, str]:
if not sql.strip():
return RunStatus.Success, "OK"
try:
response, _ = adapter.execute(sql, auto_begin=False, fetch=False)
status = RunStatus.Success
message = response._message
except (KeyboardInterrupt, SystemExit):
raise
except DbtRuntimeError as exc:
status = RunStatus.Error
message = exc.msg
except Exception as exc:
status = RunStatus.Error
message = str(exc)
return (status, message)
def _get_adapter_info(adapter, run_model_result) -> Dict[str, Any]:
"""Each adapter returns a dataclass with a flexible dictionary for
adapter-specific fields. Only the non-'model_adapter_details' fields
are guaranteed cross adapter."""
return asdict(adapter.get_adapter_run_info(run_model_result.node.config)) if adapter else {}
def track_model_run(index, num_nodes, run_model_result, adapter=None):
if tracking.active_user is None:
raise DbtInternalError("cannot track model run with no active user")
invocation_id = get_invocation_id()
node = run_model_result.node
has_group = True if hasattr(node, "group") and node.group else False
if node.resource_type == NodeType.Model:
access = node.access.value if node.access is not None else None
contract_enforced = node.contract.enforced
versioned = True if node.version else False
incremental_strategy = node.config.incremental_strategy
else:
access = None
contract_enforced = False
versioned = False
incremental_strategy = None
tracking.track_model_run(
{
"invocation_id": invocation_id,
"index": index,
"total": num_nodes,
"execution_time": run_model_result.execution_time,
"run_status": str(run_model_result.status).upper(),
"run_skipped": run_model_result.status == NodeStatus.Skipped,
"run_error": run_model_result.status == NodeStatus.Error,
"model_materialization": node.get_materialization(),
"model_incremental_strategy": incremental_strategy,
"model_id": utils.get_hash(node),
"hashed_contents": utils.get_hashed_contents(node),
"timing": [t.to_dict(omit_none=True) for t in run_model_result.timing],
"language": str(node.language),
"has_group": has_group,
"contract_enforced": contract_enforced,
"access": access,
"versioned": versioned,
"adapter_info": _get_adapter_info(adapter, run_model_result),
}
)
# make sure that we got an ok result back from a materialization
def _validate_materialization_relations_dict(inp: Dict[Any, Any], model) -> List[BaseRelation]:
try:
relations_value = inp["relations"]
except KeyError:
msg = (
'Invalid return value from materialization, "relations" '
"not found, got keys: {}".format(list(inp))
)
raise CompilationError(msg, node=model) from None
if not isinstance(relations_value, list):
msg = (
'Invalid return value from materialization, "relations" '
"not a list, got: {}".format(relations_value)
)
raise CompilationError(msg, node=model) from None
relations: List[BaseRelation] = []
for relation in relations_value:
if not isinstance(relation, BaseRelation):
msg = (
"Invalid return value from materialization, "
'"relations" contains non-Relation: {}'.format(relation)
)
raise CompilationError(msg, node=model)
assert isinstance(relation, BaseRelation)
relations.append(relation)
return relations
class ModelRunner(CompileRunner):
def get_node_representation(self):
display_quote_policy = {"database": False, "schema": False, "identifier": False}
relation = self.adapter.Relation.create_from(
self.config, self.node, quote_policy=display_quote_policy
)
# exclude the database from output if it's the default
if self.node.database == self.config.credentials.database:
relation = relation.include(database=False)
return str(relation)
def describe_node(self) -> str:
# TODO CL 'language' will be moved to node level when we change representation
materialization_strategy = self.node.config.get("incremental_strategy")
materialization = (
"microbatch"
if materialization_strategy == "microbatch"
else self.node.get_materialization()
)
return f"{self.node.language} {materialization} model {self.get_node_representation()}"
def describe_batch(self, batch_start: Optional[datetime]) -> str:
# Only visualize date if batch_start year/month/day
formatted_batch_start = MicrobatchBuilder.format_batch_start(
batch_start, self.node.config.batch_size
)
return f"batch {formatted_batch_start} of {self.get_node_representation()}"
def print_start_line(self):
fire_event(
LogStartLine(
description=self.describe_node(),
index=self.node_index,
total=self.num_nodes,
node_info=self.node.node_info,
)
)
def print_result_line(self, result):
description = self.describe_node()
group = group_lookup.get(self.node.unique_id)
if result.status == NodeStatus.Error:
status = result.status
level = EventLevel.ERROR
else:
status = result.message
level = EventLevel.INFO
fire_event(
LogModelResult(
description=description,
status=status,
index=self.node_index,
total=self.num_nodes,
execution_time=result.execution_time,
node_info=self.node.node_info,
group=group,
),
level=level,
)
def print_batch_result_line(
self,
result: RunResult,
batch_start: Optional[datetime],
batch_idx: int,
batch_total: int,
exception: Optional[Exception],
):
description = self.describe_batch(batch_start)
group = group_lookup.get(self.node.unique_id)
if result.status == NodeStatus.Error:
status = result.status
level = EventLevel.ERROR
else:
status = result.message
level = EventLevel.INFO
fire_event(
LogModelResult(
description=description,
status=status,
index=batch_idx,
total=batch_total,
execution_time=result.execution_time,
node_info=self.node.node_info,
group=group,
),
level=level,
)
if exception:
fire_event(RunningOperationCaughtError(exc=str(exception)))
def print_batch_start_line(
self, batch_start: Optional[datetime], batch_idx: int, batch_total: int
) -> None:
if batch_start is None:
return
batch_description = self.describe_batch(batch_start)
fire_event(
LogStartLine(
description=batch_description,
index=batch_idx,
total=batch_total,
node_info=self.node.node_info,
)
)
def before_execute(self) -> None:
self.print_start_line()
def after_execute(self, result) -> None:
track_model_run(self.node_index, self.num_nodes, result, adapter=self.adapter)
self.print_result_line(result)
def _build_run_model_result(self, model, context, elapsed_time: float = 0.0):
result = context["load_result"]("main")
if not result:
raise DbtRuntimeError("main is not being called during running model")
adapter_response = {}
if isinstance(result.response, dbtClassMixin):
adapter_response = result.response.to_dict(omit_none=True)
return RunResult(
node=model,
status=RunStatus.Success,
timing=[],
thread_id=threading.current_thread().name,
execution_time=elapsed_time,
message=str(result.response),
adapter_response=adapter_response,
failures=result.get("failures"),
batch_results=None,
)
def _build_run_microbatch_model_result(
self, model: ModelNode, batch_run_results: List[RunResult]
) -> RunResult:
batch_results = BatchResults()
for result in batch_run_results:
if result.batch_results is not None:
batch_results += result.batch_results
else:
raise DbtInternalError(
"Got a run result without batch results for a batch run, this should be impossible"
)
num_successes = len(batch_results.successful)
num_failures = len(batch_results.failed)
if num_failures == 0:
status = RunStatus.Success
msg = "SUCCESS"
elif num_successes == 0:
status = RunStatus.Error
msg = "ERROR"
else:
status = RunStatus.PartialSuccess
msg = f"PARTIAL SUCCESS ({num_successes}/{num_successes + num_failures})"
if model.batch_info is not None:
new_batch_results = deepcopy(model.batch_info)
new_batch_results.failed = []
new_batch_results = new_batch_results + batch_results
else:
new_batch_results = batch_results
return RunResult(
node=model,
status=status,
timing=[],
thread_id=threading.current_thread().name,
# The execution_time here doesn't get propagated to logs because
# `safe_run_hooks` handles the elapsed time at the node level
execution_time=0,
message=msg,
adapter_response={},
failures=num_failures,
batch_results=new_batch_results,
)
def _build_succesful_run_batch_result(
self,
model: ModelNode,
context: Dict[str, Any],
batch: BatchType,
elapsed_time: float = 0.0,
) -> RunResult:
run_result = self._build_run_model_result(model, context, elapsed_time)
run_result.batch_results = BatchResults(successful=[batch])
return run_result
def _build_failed_run_batch_result(
self,
model: ModelNode,
batch: BatchType,
elapsed_time: float = 0.0,
) -> RunResult:
return RunResult(
node=model,
status=RunStatus.Error,
timing=[],
thread_id=threading.current_thread().name,
execution_time=elapsed_time,
message="ERROR",
adapter_response={},
failures=1,
batch_results=BatchResults(failed=[batch]),
)
def _materialization_relations(self, result: Any, model) -> List[BaseRelation]:
if isinstance(result, str):
msg = (
'The materialization ("{}") did not explicitly return a '
"list of relations to add to the cache.".format(str(model.get_materialization()))
)
raise CompilationError(msg, node=model)
if isinstance(result, dict):
return _validate_materialization_relations_dict(result, model)
msg = (
"Invalid return value from materialization, expected a dict "
'with key "relations", got: {}'.format(str(result))
)
raise CompilationError(msg, node=model)
def _execute_model(
self,
hook_ctx: Any,
context_config: Any,
model: ModelNode,
context: Dict[str, Any],
materialization_macro: MacroProtocol,
) -> RunResult:
try:
result = MacroGenerator(
materialization_macro, context, stack=context["context_macro_stack"]
)()
finally:
self.adapter.post_model_hook(context_config, hook_ctx)
for relation in self._materialization_relations(result, model):
self.adapter.cache_added(relation.incorporate(dbt_created=True))
return self._build_run_model_result(model, context)
def _execute_microbatch_model(
self,
hook_ctx: Any,
context_config: Any,
model: ModelNode,
manifest: Manifest,
context: Dict[str, Any],
materialization_macro: MacroProtocol,
) -> RunResult:
batch_results = None
try:
batch_results = self._execute_microbatch_materialization(
model, manifest, context, materialization_macro
)
finally:
self.adapter.post_model_hook(context_config, hook_ctx)
if batch_results is not None:
return self._build_run_microbatch_model_result(model, batch_results)
else:
return self._build_run_model_result(model, context)
def execute(self, model, manifest):
context = generate_runtime_model_context(model, self.config, manifest)
materialization_macro = manifest.find_materialization_macro_by_name(
self.config.project_name, model.get_materialization(), self.adapter.type()
)
if materialization_macro is None:
raise MissingMaterializationError(
materialization=model.get_materialization(), adapter_type=self.adapter.type()
)
if "config" not in context:
raise DbtInternalError(
"Invalid materialization context generated, missing config: {}".format(context)
)
context_config = context["config"]
mat_has_supported_langs = hasattr(materialization_macro, "supported_languages")
model_lang_supported = model.language in materialization_macro.supported_languages
if mat_has_supported_langs and not model_lang_supported:
str_langs = [str(lang) for lang in materialization_macro.supported_languages]
raise DbtValidationError(
f'Materialization "{materialization_macro.name}" only supports languages {str_langs}; '
f'got "{model.language}"'
)
hook_ctx = self.adapter.pre_model_hook(context_config)
if (
model.config.materialized == "incremental"
and model.config.incremental_strategy == "microbatch"
and manifest.use_microbatch_batches(project_name=self.config.project_name)
):
return self._execute_microbatch_model(
hook_ctx, context_config, model, manifest, context, materialization_macro
)
else:
return self._execute_model(
hook_ctx, context_config, model, context, materialization_macro
)
def _execute_microbatch_materialization(
self,
model: ModelNode,
manifest: Manifest,
context: Dict[str, Any],
materialization_macro: MacroProtocol,
) -> List[RunResult]:
batch_results: List[RunResult] = []
microbatch_builder = MicrobatchBuilder(
model=model,
is_incremental=self._is_incremental(model),
event_time_start=getattr(self.config.args, "EVENT_TIME_START", None),
event_time_end=getattr(self.config.args, "EVENT_TIME_END", None),
default_end_time=self.config.invoked_at,
)
# Indicates whether current batch should be run incrementally
incremental_batch = False
# Note currently (9/30/2024) model.batch_info is only ever _not_ `None`
# IFF `dbt retry` is being run and the microbatch model had batches which
# failed on the run of the model (which is being retried)
if model.batch_info is None:
end = microbatch_builder.build_end_time()
start = microbatch_builder.build_start_time(end)
batches = microbatch_builder.build_batches(start, end)
else:
batches = model.batch_info.failed
# If there is batch info, then don't run as full_refresh and do force is_incremental
# not doing this risks blowing away the work that has already been done
if self._has_relation(model=model):
incremental_batch = True
# iterate over each batch, calling materialization_macro to get a batch-level run result
for batch_idx, batch in enumerate(batches):
self.print_batch_start_line(batch[0], batch_idx + 1, len(batches))
exception = None
start_time = time.perf_counter()
try:
# Set start/end in context prior to re-compiling
model.config["__dbt_internal_microbatch_event_time_start"] = batch[0]
model.config["__dbt_internal_microbatch_event_time_end"] = batch[1]
# Recompile node to re-resolve refs with event time filters rendered, update context
self.compiler.compile_node(
model,
manifest,
{},
split_suffix=MicrobatchBuilder.format_batch_start(
batch[0], model.config.batch_size
),
)
# Update jinja context with batch context members
batch_context = microbatch_builder.build_batch_context(
incremental_batch=incremental_batch
)
context.update(batch_context)
# Materialize batch and cache any materialized relations
result = MacroGenerator(
materialization_macro, context, stack=context["context_macro_stack"]
)()
for relation in self._materialization_relations(result, model):
self.adapter.cache_added(relation.incorporate(dbt_created=True))
# Build result of executed batch
batch_run_result = self._build_succesful_run_batch_result(
model, context, batch, time.perf_counter() - start_time
)
# At least one batch has been inserted successfully!
incremental_batch = True
except (KeyboardInterrupt, SystemExit):
# reraise it for GraphRunnableTask.execute_nodes to handle
raise
except Exception as e:
exception = e
batch_run_result = self._build_failed_run_batch_result(
model, batch, time.perf_counter() - start_time
)
self.print_batch_result_line(
batch_run_result, batch[0], batch_idx + 1, len(batches), exception
)
batch_results.append(batch_run_result)
return batch_results
def _has_relation(self, model) -> bool:
relation_info = self.adapter.Relation.create_from(self.config, model)
relation = self.adapter.get_relation(
relation_info.database, relation_info.schema, relation_info.name
)
return relation is not None
def _is_incremental(self, model) -> bool:
# TODO: Remove. This is a temporary method. We're working with adapters on
# a strategy to ensure we can access the `is_incremental` logic without drift
relation_info = self.adapter.Relation.create_from(self.config, model)
relation = self.adapter.get_relation(
relation_info.database, relation_info.schema, relation_info.name
)
if (
relation is not None
and relation.type == "table"
and model.config.materialized == "incremental"
):
if model.config.full_refresh is not None:
return not model.config.full_refresh
else:
return not getattr(self.config.args, "FULL_REFRESH", False)
else:
return False
class RunTask(CompileTask):
def __init__(
self,
args: Flags,
config: RuntimeConfig,
manifest: Manifest,
batch_map: Optional[Dict[str, BatchResults]] = None,
) -> None:
super().__init__(args, config, manifest)
self.batch_map = batch_map
def raise_on_first_error(self) -> bool:
return False
def get_hook_sql(self, adapter, hook, idx, num_hooks, extra_context) -> str:
if self.manifest is None:
raise DbtInternalError("compile_node called before manifest was loaded")
compiled = self.compiler.compile_node(hook, self.manifest, extra_context)
statement = compiled.compiled_code
hook_index = hook.index or num_hooks
hook_obj = get_hook(statement, index=hook_index)
return hook_obj.sql or ""
def _hook_keyfunc(self, hook: HookNode) -> Tuple[str, Optional[int]]:
package_name = hook.package_name
if package_name == self.config.project_name:
package_name = BiggestName("")
return package_name, hook.index
def get_hooks_by_type(self, hook_type: RunHookType) -> List[HookNode]:
if self.manifest is None:
raise DbtInternalError("self.manifest was None in get_hooks_by_type")
nodes = self.manifest.nodes.values()
# find all hooks defined in the manifest (could be multiple projects)
hooks: List[HookNode] = get_hooks_by_tags(nodes, {hook_type})
hooks.sort(key=self._hook_keyfunc)
return hooks
def safe_run_hooks(
self, adapter: BaseAdapter, hook_type: RunHookType, extra_context: Dict[str, Any]
) -> RunStatus:
ordered_hooks = self.get_hooks_by_type(hook_type)
if hook_type == RunHookType.End and ordered_hooks:
fire_event(Formatting(""))
# on-run-* hooks should run outside a transaction. This happens because psycopg2 automatically begins a transaction when a connection is created.
adapter.clear_transaction()
if not ordered_hooks:
return RunStatus.Success
status = RunStatus.Success
failed = False
num_hooks = len(ordered_hooks)
for idx, hook in enumerate(ordered_hooks, 1):
with log_contextvars(node_info=hook.node_info):
hook.index = idx
hook_name = f"{hook.package_name}.{hook_type}.{hook.index - 1}"
execution_time = 0.0
timing: List[TimingInfo] = []
failures = 1
if not failed:
with collect_timing_info("compile", timing.append):
sql = self.get_hook_sql(
adapter, hook, hook.index, num_hooks, extra_context
)
started_at = timing[0].started_at or datetime.utcnow()
hook.update_event_status(
started_at=started_at.isoformat(), node_status=RunningStatus.Started
)
fire_event(
LogHookStartLine(
statement=hook_name,
index=hook.index,
total=num_hooks,
node_info=hook.node_info,
)
)
with collect_timing_info("execute", timing.append):
status, message = get_execution_status(sql, adapter)
finished_at = timing[1].completed_at or datetime.utcnow()
hook.update_event_status(finished_at=finished_at.isoformat())
execution_time = (finished_at - started_at).total_seconds()
failures = 0 if status == RunStatus.Success else 1
if status == RunStatus.Success:
message = f"{hook_name} passed"
else:
message = f"{hook_name} failed, error:\n {message}"
failed = True
else:
status = RunStatus.Skipped
message = f"{hook_name} skipped"
hook.update_event_status(node_status=status)
self.node_results.append(
RunResult(
status=status,
thread_id="main",
timing=timing,
message=message,
adapter_response={},
execution_time=execution_time,
failures=failures,
node=hook,
)
)
fire_event(
LogHookEndLine(
statement=hook_name,
status=status,
index=hook.index,
total=num_hooks,
execution_time=execution_time,
node_info=hook.node_info,
)
)
if hook_type == RunHookType.Start and ordered_hooks:
fire_event(Formatting(""))
return status
def print_results_line(self, results, execution_time) -> None:
nodes = [r.node for r in results if hasattr(r, "node")]
stat_line = get_counts(nodes)
execution = ""
if execution_time is not None:
execution = utils.humanize_execution_time(execution_time=execution_time)
fire_event(Formatting(""))
fire_event(
FinishedRunningStats(
stat_line=stat_line, execution=execution, execution_time=execution_time
)
)
def populate_microbatch_batches(self, selected_uids: AbstractSet[str]):
if self.batch_map is not None and self.manifest is not None:
for uid in selected_uids:
if uid in self.batch_map:
node = self.manifest.ref_lookup.perform_lookup(uid, self.manifest)
if isinstance(node, ModelNode):
node.batch_info = self.batch_map[uid]
def before_run(self, adapter: BaseAdapter, selected_uids: AbstractSet[str]) -> RunStatus:
with adapter.connection_named("master"):
self.defer_to_manifest()
required_schemas = self.get_model_schemas(adapter, selected_uids)
self.create_schemas(adapter, required_schemas)
self.populate_adapter_cache(adapter, required_schemas)
self.populate_microbatch_batches(selected_uids)
group_lookup.init(self.manifest, selected_uids)
run_hooks_status = self.safe_run_hooks(adapter, RunHookType.Start, {})
return run_hooks_status
def after_run(self, adapter, results) -> None:
# in on-run-end hooks, provide the value 'database_schemas', which is a
# list of unique (database, schema) pairs that successfully executed
# models were in. For backwards compatibility, include the old
# 'schemas', which did not include database information.
database_schema_set: Set[Tuple[Optional[str], str]] = {
(r.node.database, r.node.schema)
for r in results
if (hasattr(r, "node") and r.node.is_relational)
and r.status not in (NodeStatus.Error, NodeStatus.Fail, NodeStatus.Skipped)
}
extras = {
"schemas": list({s for _, s in database_schema_set}),
"results": [
r for r in results if r.thread_id != "main" or r.status == RunStatus.Error
], # exclude that didn't fail to preserve backwards compatibility
"database_schemas": list(database_schema_set),
}
try:
with adapter.connection_named("master"):
self.safe_run_hooks(adapter, RunHookType.End, extras)
except (KeyboardInterrupt, SystemExit):
run_result = self.get_result(
results=self.node_results,
elapsed_time=time.time() - self.started_at,
generated_at=datetime.utcnow(),
)
if self.args.write_json and hasattr(run_result, "write"):
run_result.write(self.result_path())
print_run_end_messages(self.node_results, keyboard_interrupt=True)
raise
def get_node_selector(self) -> ResourceTypeSelector:
if self.manifest is None or self.graph is None:
raise DbtInternalError("manifest and graph must be set to get perform node selection")
return ResourceTypeSelector(
graph=self.graph,
manifest=self.manifest,
previous_state=self.previous_state,
resource_types=[NodeType.Model],
)
def get_runner_type(self, _) -> Optional[Type[BaseRunner]]:
return ModelRunner
def task_end_messages(self, results) -> None:
if results:
print_run_end_messages(results)