forked from elijahcole/sinr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
datasets.py
224 lines (182 loc) · 8.42 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import os
import numpy as np
import json
import pandas as pd
from calendar import monthrange
import torch
import utils
class LocationDataset(torch.utils.data.Dataset):
def __init__(self, locs, labels, classes, class_to_taxa, input_enc, device):
# handle input encoding:
self.input_enc = input_enc
if self.input_enc in ['env', 'sin_cos_env']:
raster = load_env()
else:
raster = None
self.enc = utils.CoordEncoder(input_enc, raster)
# define some properties:
self.locs = locs
self.loc_feats = self.enc.encode(self.locs)
self.labels = labels
self.classes = classes
self.class_to_taxa = class_to_taxa
# useful numbers:
self.num_classes = len(np.unique(labels))
self.input_dim = self.loc_feats.shape[1]
if self.enc.raster is not None:
self.enc.raster = self.enc.raster.to(device)
def __len__(self):
return self.loc_feats.shape[0]
def __getitem__(self, index):
loc_feat = self.loc_feats[index, :]
loc = self.locs[index, :]
class_id = self.labels[index]
return loc_feat, loc, class_id
class LocationDatasetUnconditional(torch.utils.data.Dataset):
def __init__(self, locs, input_enc, device):
# Handle input encoding:
self.input_enc = input_enc
if self.input_enc in ['env', 'sin_cos_env']:
raster = load_env()
else:
raster = None
self.enc = utils.CoordEncoder(input_enc, raster)
# Define some properties:
self.locs = locs
self.loc_feats = self.enc.encode(self.locs)
# Useful numbers:
self.input_dim = self.loc_feats.shape[1]
if self.enc.raster is not None:
self.enc.raster = self.enc.raster.to(device)
def __len__(self):
return self.loc_feats.shape[0]
def __getitem__(self, index):
loc_feat = self.loc_feats[index, :]
loc = self.locs[index, :]
return loc_feat, loc
def load_env():
with open('paths.json', 'r') as f:
paths = json.load(f)
raster = load_context_feats(os.path.join(paths['env'],'bioclim_elevation_scaled.npy'))
return raster
def load_context_feats(data_path):
context_feats = np.load(data_path).astype(np.float32)
context_feats = torch.from_numpy(context_feats)
return context_feats
def load_inat_data(ip_file, taxa_of_interest=None):
print('\nLoading ' + ip_file)
data = pd.read_csv(ip_file)
# remove outliers
num_obs = data.shape[0]
data = data[((data['latitude'] <= 90) & (data['latitude'] >= -90) & (data['longitude'] <= 180) & (data['longitude'] >= -180) )]
if (num_obs - data.shape[0]) > 0:
print(num_obs - data.shape[0], 'items filtered due to invalid locations')
if 'accuracy' in data.columns:
data.drop(['accuracy'], axis=1, inplace=True)
if 'positional_accuracy' in data.columns:
data.drop(['positional_accuracy'], axis=1, inplace=True)
if 'geoprivacy' in data.columns:
data.drop(['geoprivacy'], axis=1, inplace=True)
if 'observed_on' in data.columns:
data.rename(columns = {'observed_on':'date'}, inplace=True)
num_obs_orig = data.shape[0]
data = data.dropna()
size_diff = num_obs_orig - data.shape[0]
if size_diff > 0:
print(size_diff, 'observation(s) with a NaN entry out of' , num_obs_orig, 'removed')
# keep only taxa of interest:
if taxa_of_interest is not None:
num_obs_orig = data.shape[0]
data = data[data['taxon_id'].isin(taxa_of_interest)]
print(num_obs_orig - data.shape[0], 'observation(s) out of' , num_obs_orig, 'from different taxa removed')
print('Number of unique classes {}'.format(np.unique(data['taxon_id'].values).shape[0]))
locs = np.vstack((data['longitude'].values, data['latitude'].values)).T.astype(np.float32)
taxa = data['taxon_id'].values.astype(np.int64)
if 'user_id' in data.columns:
users = data['user_id'].values.astype(np.int64)
_, users = np.unique(users, return_inverse=True)
elif 'observer_id' in data.columns:
users = data['observer_id'].values.astype(np.int64)
_, users = np.unique(users, return_inverse=True)
else:
users = np.ones(taxa.shape[0], dtype=np.int64)*-1
# Note - assumes that dates are in format YYYY-MM-DD
years = np.array([int(d_str[:4]) for d_str in data['date'].values])
months = np.array([int(d_str[5:7]) for d_str in data['date'].values])
days = np.array([int(d_str[8:10]) for d_str in data['date'].values])
days_per_month = np.cumsum([0] + [monthrange(2018, mm)[1] for mm in range(1, 12)])
dates = days_per_month[months-1] + days-1
dates = np.round((dates) / 364.0, 4).astype(np.float32)
if 'id' in data.columns:
obs_ids = data['id'].values
elif 'observation_uuid' in data.columns:
obs_ids = data['observation_uuid'].values
return locs, taxa, users, dates, years, obs_ids
def choose_aux_species(current_species, num_aux_species, aux_species_seed, taxa_file):
if num_aux_species == 0:
return []
with open('paths.json', 'r') as f:
paths = json.load(f)
data_dir = paths['train']
taxa_file = os.path.join(data_dir, taxa_file)
with open(taxa_file, 'r') as f:
inat_large_metadata = json.load(f)
aux_species_candidates = [x['taxon_id'] for x in inat_large_metadata]
aux_species_candidates = np.setdiff1d(aux_species_candidates, current_species)
print(f'choosing {num_aux_species} species to add from {len(aux_species_candidates)} candidates')
rng = np.random.default_rng(aux_species_seed)
idx_rand_aux_species = rng.permutation(len(aux_species_candidates))
aux_species = list(aux_species_candidates[idx_rand_aux_species[:num_aux_species]])
return aux_species
def get_taxa_of_interest(species_set='all', num_aux_species=0, aux_species_seed=123, taxa_file=None, taxa_file_snt=None):
if species_set == 'all':
return None
if species_set == 'snt_birds':
assert taxa_file_snt is not None
with open(taxa_file_snt, 'r') as f: #
taxa_subsets = json.load(f)
taxa_of_interest = list(taxa_subsets['snt_birds'])
else:
raise NotImplementedError
# optionally add some other species back in:
aux_species = choose_aux_species(taxa_of_interest, num_aux_species, aux_species_seed, taxa_file)
taxa_of_interest.extend(aux_species)
return taxa_of_interest
def get_idx_subsample_observations(labels, hard_cap=-1, hard_cap_seed=123):
if hard_cap == -1:
return np.arange(len(labels))
print(f'subsampling (up to) {hard_cap} per class for the training set')
class_counts = {id: 0 for id in np.unique(labels)}
ss_rng = np.random.default_rng(hard_cap_seed)
idx_rand = ss_rng.permutation(len(labels))
idx_ss = []
for i in idx_rand:
class_id = labels[i]
if class_counts[class_id] < hard_cap:
idx_ss.append(i)
class_counts[class_id] += 1
idx_ss = np.sort(idx_ss)
print(f'final training set size: {len(idx_ss)}')
return idx_ss
def get_train_data(params):
with open('paths.json', 'r') as f:
paths = json.load(f)
data_dir = paths['train']
obs_file = os.path.join(data_dir, params['obs_file'])
taxa_file = os.path.join(data_dir, params['taxa_file'])
taxa_file_snt = os.path.join(data_dir, 'taxa_subsets.json')
taxa_of_interest = get_taxa_of_interest(params['species_set'], params['num_aux_species'], params['aux_species_seed'], params['taxa_file'], taxa_file_snt)
locs, labels, _, _, _, _ = load_inat_data(obs_file, taxa_of_interest)
unique_taxa, class_ids = np.unique(labels, return_inverse=True)
class_to_taxa = unique_taxa.tolist()
# load class names
class_info_file = json.load(open(taxa_file, 'r'))
class_names_file = [cc['latin_name'] for cc in class_info_file]
taxa_ids_file = [cc['taxon_id'] for cc in class_info_file]
classes = dict(zip(taxa_ids_file, class_names_file))
idx_ss = get_idx_subsample_observations(labels, params['hard_cap_num_per_class'], params['hard_cap_seed'])
locs = torch.from_numpy(np.array(locs)[idx_ss]) # convert to Tensor
labels = torch.from_numpy(np.array(class_ids)[idx_ss])
# ds = LocationDataset(locs, labels, classes, class_to_taxa, params['input_enc'], params['device'])
ds = LocationDatasetUnconditional(locs, params['input_enc'], params['device']) # Inefficient, but whatever.
return ds