forked from elijahcole/sinr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
losses.py
192 lines (142 loc) · 6.52 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import torch
import utils
def get_loss_function(params):
if params['loss'] == 'an_full':
return an_full
elif params['loss'] == 'an_slds':
return an_slds
elif params['loss'] == 'an_ssdl':
return an_ssdl
elif params['loss'] == 'an_full_me':
return an_full_me
elif params['loss'] == 'an_slds_me':
return an_slds_me
elif params['loss'] == 'an_ssdl_me':
return an_ssdl_me
elif params['loss'] == 'an_full_uncondititonal':
return an_full_unconditional
def neg_log(x):
return -torch.log(x + 1e-5)
def bernoulli_entropy(p):
entropy = p * neg_log(p) + (1-p) * neg_log(1-p)
return entropy
def an_ssdl(batch, model, params, loc_to_feats, neg_type='hard'):
inds = torch.arange(params['batch_size'])
loc_feat, _, class_id = batch
loc_feat = loc_feat.to(params['device'])
class_id = class_id.to(params['device'])
assert model.inc_bias == False
batch_size = loc_feat.shape[0]
# create random background samples and extract features
rand_loc = utils.rand_samples(batch_size, params['device'], rand_type='spherical')
rand_feat = loc_to_feats(rand_loc, normalize=False)
# get location embeddings
loc_cat = torch.cat((loc_feat, rand_feat), 0) # stack vertically
loc_emb_cat = model(loc_cat, return_feats=True)
loc_emb = loc_emb_cat[:batch_size, :]
loc_emb_rand = loc_emb_cat[batch_size:, :]
loc_pred = torch.sigmoid(model.class_emb(loc_emb))
loc_pred_rand = torch.sigmoid(model.class_emb(loc_emb_rand))
# data loss
loss_pos = neg_log(loc_pred[inds[:batch_size], class_id])
if neg_type == 'hard':
loss_bg = neg_log(1.0 - loc_pred_rand[inds[:batch_size], class_id]) # assume negative
elif neg_type == 'entropy':
loss_bg = -1 * bernoulli_entropy(1.0 - loc_pred_rand[inds[:batch_size], class_id]) # entropy
else:
raise NotImplementedError
# total loss
loss = loss_pos.mean() + loss_bg.mean()
return loss
def an_slds(batch, model, params, loc_to_feats, neg_type='hard'):
inds = torch.arange(params['batch_size'])
loc_feat, _, class_id = batch
loc_feat = loc_feat.to(params['device'])
class_id = class_id.to(params['device'])
assert model.inc_bias == False
batch_size = loc_feat.shape[0]
loc_emb = model(loc_feat, return_feats=True)
loc_pred = torch.sigmoid(model.class_emb(loc_emb))
num_classes = loc_pred.shape[1]
bg_class = torch.randint(low=0, high=num_classes-1, size=(batch_size,), device=params['device'])
bg_class[bg_class >= class_id[:batch_size]] += 1
# data loss
loss_pos = neg_log(loc_pred[inds[:batch_size], class_id])
if neg_type == 'hard':
loss_bg = neg_log(1.0 - loc_pred[inds[:batch_size], bg_class]) # assume negative
elif neg_type == 'entropy':
loss_bg = -1 * bernoulli_entropy(1.0 - loc_pred[inds[:batch_size], bg_class]) # entropy
else:
raise NotImplementedError
# total loss
loss = loss_pos.mean() + loss_bg.mean()
return loss
def an_full(batch, model, params, loc_to_feats, neg_type='hard'):
inds = torch.arange(params['batch_size'])
loc_feat, _, class_id = batch
loc_feat = loc_feat.to(params['device'])
class_id = class_id.to(params['device'])
assert model.inc_bias == False
batch_size = loc_feat.shape[0]
# create random background samples and extract features
rand_loc = utils.rand_samples(batch_size, params['device'], rand_type='spherical')
rand_feat = loc_to_feats(rand_loc, normalize=False)
# get location embeddings
loc_cat = torch.cat((loc_feat, rand_feat), 0) # stack vertically
loc_emb_cat = model(loc_cat, return_feats=True)
loc_emb = loc_emb_cat[:batch_size, :]
loc_emb_rand = loc_emb_cat[batch_size:, :]
# get predictions for locations and background locations
loc_pred = torch.sigmoid(model.class_emb(loc_emb))
loc_pred_rand = torch.sigmoid(model.class_emb(loc_emb_rand))
# data loss
if neg_type == 'hard':
loss_pos = neg_log(1.0 - loc_pred) # assume negative
loss_bg = neg_log(1.0 - loc_pred_rand) # assume negative
elif neg_type == 'entropy':
loss_pos = -1 * bernoulli_entropy(1.0 - loc_pred) # entropy
loss_bg = -1 * bernoulli_entropy(1.0 - loc_pred_rand) # entropy
else:
raise NotImplementedError
loss_pos[inds[:batch_size], class_id] = params['pos_weight'] * neg_log(loc_pred[inds[:batch_size], class_id])
# total loss
loss = loss_pos.mean() + loss_bg.mean()
return loss
def an_full_unconditional(batch, model, params, loc_to_feats, alpha = 0.95, neg_type='hard'):
inds = torch.arange(params['batch_size'])
loc_feat, _ = batch # Remove class_id from unpacking
loc_feat = loc_feat.to(params['device'])
assert model.inc_bias == False
batch_size = loc_feat.shape[0]
# create random background samples and extract features
rand_loc = utils.rand_samples(batch_size, params['device'], rand_type='spherical')
rand_feat = loc_to_feats(rand_loc, normalize=False)
# get location embeddings
loc_cat = torch.cat((loc_feat, rand_feat), 0) # stack vertically
loc_emb_cat = model(loc_cat, return_feats=True)
loc_emb = loc_emb_cat[:batch_size, :]
loc_emb_rand = loc_emb_cat[batch_size:, :]
# get predictions for locations and background locations
loc_pred = torch.sigmoid(model.any_species_emb(loc_emb))
loc_pred_rand = torch.sigmoid(model.any_species_emb(loc_emb_rand))
# data loss
if neg_type == 'hard':
loss_pos = neg_log(1.0 - loc_pred) # assume negative
loss_bg = neg_log(1.0 - loc_pred_rand) # assume negative
elif neg_type == 'entropy':
loss_pos = -1 * bernoulli_entropy(1.0 - loc_pred) # entropy
loss_bg = -1 * bernoulli_entropy(1.0 - loc_pred_rand) # entropy
else:
raise NotImplementedError
# Adjust the positive loss weight uniformly (species unconditional)
loss_pos = neg_log(loc_pred)
# total loss
# loss = loss_pos.mean() + loss_bg.mean()
loss = alpha * loss_pos.mean() + (1 - alpha) * loss_bg.mean()
return loss
def an_full_me(batch, model, params, loc_to_feats):
return an_full(batch, model, params, loc_to_feats, neg_type='entropy')
def an_ssdl_me(batch, model, params, loc_to_feats):
return an_ssdl(batch, model, params, loc_to_feats, neg_type='entropy')
def an_slds_me(batch, model, params, loc_to_feats):
return an_slds(batch, model, params, loc_to_feats, neg_type='entropy')