forked from openai/chatgpt-retrieval-plugin
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess_zip.py
151 lines (129 loc) · 5.45 KB
/
process_zip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import uuid
import zipfile
import os
import json
import argparse
import asyncio
from models.models import Document, DocumentMetadata, Source
from datastore.datastore import DataStore
from datastore.factory import get_datastore
from services.extract_metadata import extract_metadata_from_document
from services.file import extract_text_from_filepath
from services.pii_detection import screen_text_for_pii
DOCUMENT_UPSERT_BATCH_SIZE = 50
async def process_file_dump(
filepath: str,
datastore: DataStore,
custom_metadata: dict,
screen_for_pii: bool,
extract_metadata: bool,
):
# create a ZipFile object and extract all the files into a directory named 'dump'
with zipfile.ZipFile(filepath) as zip_file:
zip_file.extractall("dump")
documents = []
skipped_files = []
# use os.walk to traverse the dump directory and its subdirectories
for root, dirs, files in os.walk("dump"):
for filename in files:
if len(documents) % 20 == 0:
print(f"Processed {len(documents)} documents")
filepath = os.path.join(root, filename)
try:
extracted_text = extract_text_from_filepath(filepath)
print(f"extracted_text from {filepath}")
# create a metadata object with the source and source_id fields
metadata = DocumentMetadata(
source=Source.file,
source_id=filename,
)
# update metadata with custom values
for key, value in custom_metadata.items():
if hasattr(metadata, key):
setattr(metadata, key, value)
# screen for pii if requested
if screen_for_pii:
pii_detected = screen_text_for_pii(extracted_text)
# if pii detected, print a warning and skip the document
if pii_detected:
print("PII detected in document, skipping")
skipped_files.append(
filepath
) # add the skipped file to the list
continue
# extract metadata if requested
if extract_metadata:
# extract metadata from the document text
extracted_metadata = extract_metadata_from_document(
f"Text: {extracted_text}; Metadata: {str(metadata)}"
)
# get a Metadata object from the extracted metadata
metadata = DocumentMetadata(**extracted_metadata)
# create a document object with a random id, text and metadata
document = Document(
id=str(uuid.uuid4()),
text=extracted_text,
metadata=metadata,
)
documents.append(document)
except Exception as e:
# log the error and continue with the next file
print(f"Error processing {filepath}: {e}")
skipped_files.append(filepath) # add the skipped file to the list
# do this in batches, the upsert method already batches documents but this allows
# us to add more descriptive logging
for i in range(0, len(documents), DOCUMENT_UPSERT_BATCH_SIZE):
# Get the text of the chunks in the current batch
batch_documents = [doc for doc in documents[i : i + DOCUMENT_UPSERT_BATCH_SIZE]]
print(f"Upserting batch of {len(batch_documents)} documents, batch {i}")
print("documents: ", documents)
await datastore.upsert(batch_documents)
# delete all files in the dump directory
for root, dirs, files in os.walk("dump", topdown=False):
for filename in files:
filepath = os.path.join(root, filename)
os.remove(filepath)
for dirname in dirs:
dirpath = os.path.join(root, dirname)
os.rmdir(dirpath)
# delete the dump directory
os.rmdir("dump")
# print the skipped files
print(f"Skipped {len(skipped_files)} files due to errors or PII detection")
for file in skipped_files:
print(file)
async def main():
# parse the command-line arguments
parser = argparse.ArgumentParser()
parser.add_argument("--filepath", required=True, help="The path to the file dump")
parser.add_argument(
"--custom_metadata",
default="{}",
help="A JSON string of key-value pairs to update the metadata of the documents",
)
parser.add_argument(
"--screen_for_pii",
default=False,
type=bool,
help="A boolean flag to indicate whether to try the PII detection function (using a language model)",
)
parser.add_argument(
"--extract_metadata",
default=False,
type=bool,
help="A boolean flag to indicate whether to try to extract metadata from the document (using a language model)",
)
args = parser.parse_args()
# get the arguments
filepath = args.filepath
custom_metadata = json.loads(args.custom_metadata)
screen_for_pii = args.screen_for_pii
extract_metadata = args.extract_metadata
# initialize the db instance once as a global variable
datastore = await get_datastore()
# process the file dump
await process_file_dump(
filepath, datastore, custom_metadata, screen_for_pii, extract_metadata
)
if __name__ == "__main__":
asyncio.run(main())