forked from luost26/3D-Generative-SBDD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sample_for_pdb.py
273 lines (242 loc) · 10 KB
/
sample_for_pdb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import argparse
import os
import warnings
from Bio import BiopythonWarning
from Bio.PDB.PDBParser import PDBParser
from Bio.PDB.Selection import unfold_entities
from easydict import EasyDict
from rdkit import Chem
from mol_gen.models.TDSBDD.sample import * # Import everything from `sample.py`
from mol_gen.models.TDSBDD.utils.protein_ligand import PDBProtein
def pdb_to_pocket_data(pdb_path, center, bbox_size):
center = torch.FloatTensor(center)
warnings.simplefilter("ignore", BiopythonWarning)
ptable = Chem.GetPeriodicTable()
parser = PDBParser()
model = parser.get_structure(None, pdb_path)[0]
protein_dict = EasyDict(
{
"element": [],
"pos": [],
"is_backbone": [],
"atom_to_aa_type": [],
}
)
for atom in unfold_entities(model, "A"):
res = atom.get_parent()
resname = res.get_resname()
if resname == "MSE":
resname = "MET"
if resname not in PDBProtein.AA_NAME_NUMBER:
continue # Ignore water, heteros, and non-standard residues.
element_symb = atom.element.capitalize()
if element_symb == "H":
continue
x, y, z = atom.get_coord()
pos = torch.FloatTensor([x, y, z])
if (pos - center).abs().max() > (bbox_size / 2):
continue
protein_dict["element"].append(ptable.GetAtomicNumber(element_symb))
protein_dict["pos"].append(pos)
protein_dict["is_backbone"].append(atom.get_name() in ["N", "CA", "C", "O"])
protein_dict["atom_to_aa_type"].append(PDBProtein.AA_NAME_NUMBER[resname])
if len(protein_dict["element"]) == 0:
raise ValueError(
"No atoms found in the bounding box (center=%r, size=%f)."
% (center, bbox_size)
)
protein_dict["element"] = torch.LongTensor(protein_dict["element"])
protein_dict["pos"] = torch.stack(protein_dict["pos"], dim=0)
protein_dict["is_backbone"] = torch.BoolTensor(protein_dict["is_backbone"])
protein_dict["atom_to_aa_type"] = torch.LongTensor(protein_dict["atom_to_aa_type"])
data = ProteinLigandData.from_protein_ligand_dicts(
protein_dict=protein_dict,
ligand_dict={
"element": torch.empty(
[
0,
],
dtype=torch.long,
),
"pos": torch.empty([0, 3], dtype=torch.float),
"atom_feature": torch.empty([0, 8], dtype=torch.float),
"bond_index": torch.empty([2, 0], dtype=torch.long),
"bond_type": torch.empty(
[
0,
],
dtype=torch.long,
),
},
)
return data
"""
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--pdb_path', type=str,
default='./example/4yhj.pdb')
parser.add_argument('--center', type=lambda s: list(map(float, s.split(','))),
default=[32.0, 28.0, 36.0],
help='Center of the pocket bounding box, in format x,y,z')
parser.add_argument('--bbox_size', type=float, default=23.0,
help='Pocket bounding box size')
parser.add_argument('--config', type=str, default='./configs/sample_for_pdb.yml')
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument('--outdir', type=str, default='./outputs')
args = parser.parse_args()
"""
def sample(config_path, center, outdir, pdb_path, device="cuda:1", bbox_size=23.0):
# Load configs
config = load_config(config_path)
config_name = os.path.basename(config_path)[
: os.path.basename(config_path).rfind(".")
]
seed_all(config.sample.seed)
# Logging
logger = get_logger("sample", outdir)
logger.info(config)
shutil.copyfile(config_path, os.path.join(outdir, os.path.basename(config_path)))
shutil.copyfile(pdb_path, os.path.join(outdir, os.path.basename(pdb_path)))
protein_featurizer = FeaturizeProteinAtom()
ligand_featurizer = FeaturizeLigandAtom()
contrastive_sampler = ContrastiveSample(num_real=0, num_fake=0)
masking = LigandMaskAll()
transform = Compose(
[
LigandCountNeighbors(),
protein_featurizer,
ligand_featurizer,
FeaturizeLigandBond(),
masking,
]
)
data = pdb_to_pocket_data(pdb_path, center, bbox_size)
data = transform(data)
# Model (Main)
logger.info("Loading main model...")
ckpt = torch.load(config.model.main.checkpoint, map_location=device)
model = MaskFillModel(
ckpt["config"].model,
num_classes=contrastive_sampler.num_elements,
protein_atom_feature_dim=protein_featurizer.feature_dim,
ligand_atom_feature_dim=ligand_featurizer.feature_dim,
num_indicators=len(ATOM_FAMILIES),
).to(device)
model.load_state_dict(ckpt["model"])
# Model (Frontier Network)
logger.info("Loading frontier model...")
ckpt_ft = torch.load(config.model.frontier.checkpoint, map_location=device)
ftnet = FrontierNetwork(
ckpt_ft["config"].model,
protein_atom_feature_dim=protein_featurizer.feature_dim,
ligand_atom_feature_dim=ligand_featurizer.feature_dim,
).to(device)
ftnet.load_state_dict(ckpt_ft["model"])
# Sampling
# The algorithm is the same as the one `sample.py`.
pool = EasyDict(
{
"queue": [],
"failed": [],
"finished": [],
"duplicate": [],
"smiles": set(),
}
)
logger.info("Initialization")
pbar = tqdm(total=config.sample.num_samples, desc="InitSample")
while len(pool.queue) < config.sample.num_samples:
queue_size_before = len(pool.queue)
pool.queue += get_init_samples(
data=data.to(device),
model=model,
default_max_retry=config.sample.num_retry,
)
if len(pool.queue) > config.sample.num_samples:
pool.queue = pool.queue[: config.sample.num_samples]
pbar.update(len(pool.queue) - queue_size_before)
pbar.close()
print_pool_status(pool, logger)
logger.info("Start sampling")
global_step = 0
try:
while len(pool.finished) < config.sample.num_samples:
global_step += 1
if global_step > config.sample.max_steps:
break
queue_size = len(pool.queue)
queue_tmp = []
for data in tqdm(pool.queue):
nexts = []
data_next_list = get_next(
data.to(device),
ftnet=ftnet,
model=model,
logger=logger,
num_next=5,
)
for data_next in data_next_list:
if data_next.status == STATUS_FINISHED:
try:
rdmol = reconstruct_from_generated(data_next)
smiles = Chem.MolToSmiles(rdmol)
data_next.smiles = smiles
data_next.rdmol = rdmol
valid = filter_rd_mol(rdmol)
if not valid:
logger.warning("Ignoring invalid molecule: %s" % smiles)
pool.failed.append(data_next)
elif smiles in pool.smiles:
logger.warning(
"Ignoring duplicate molecule: %s" % smiles
)
pool.duplicate.append(data_next)
else: # Pass checks
logger.info("Success: %s" % smiles)
pool.finished.append(data_next)
pool.smiles.add(smiles)
except MolReconsError:
logger.warning(
"Ignoring, because reconstruction error encountered."
)
pool.failed.append(data_next)
else:
if data_next.logp_history[-1] < config.sample.logp_thres:
if data_next.remaining_retry > 0:
data_next.remaining_retry -= 1
logger.info(
"[%s] Retrying, remaining %d retries"
% (data.ligand_filename, data_next.remaining_retry)
)
nexts.append(random_roll_back(data_next))
else:
logger.info("[%s] Failed" % (data.ligand_filename,))
pool.failed.append(data_next)
else:
nexts.append(data_next)
queue_tmp += nexts
next_factor = 1.0
p_next = softmax(
np.array([np.mean(data.logp_history) for data in queue_tmp])
* next_factor
)
# print(np.arange(len(queue_tmp)), config.sample.beam_size)
next_idx = np.random.choice(
np.arange(len(queue_tmp)),
size=config.sample.beam_size,
replace=True,
p=p_next,
)
pool.queue = [queue_tmp[idx] for idx in next_idx]
print_pool_status(pool, logger)
except KeyboardInterrupt:
logger.info("Terminated. Generated molecules will be saved.")
sdf_dir = os.path.join(outdir, "SDF")
os.makedirs(sdf_dir)
with open(os.path.join(outdir, "SMILES.txt"), "a") as smiles_f:
for i, data_finished in enumerate(pool["finished"]):
smiles_f.write(data_finished.smiles + "\n")
writer = Chem.SDWriter(os.path.join(sdf_dir, "%d.sdf" % i))
writer.SetKekulize(False)
writer.write(data_finished.rdmol, confId=0)
writer.close()