forked from carpedm20/multi-speaker-tacotron-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
hparams.py
156 lines (121 loc) · 3.89 KB
/
hparams.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import tensorflow as tf
SCALE_FACTOR = 1
def f(num):
return num // SCALE_FACTOR
basic_params = {
# Comma-separated list of cleaners to run on text prior to training and eval. For non-English
# text, you may want to use "basic_cleaners" or "transliteration_cleaners" See TRAINING_DATA.md.
'cleaners': 'english_cleaners', #originally korean_cleaners
}
basic_params.update({
# Audio
'num_mels': 80,
'num_freq': 1025,
'sample_rate': 24000, # trained as 20000 but need to be 24000
'frame_length_ms': 50,
'frame_shift_ms': 12.5,
'preemphasis': 0.97,
'min_level_db': -100,
'ref_level_db': 20,
})
if True:
basic_params.update({
'sample_rate': 22050, #originally 24000 (krbook), 22050(lj-data), 20000(others)
})
basic_params.update({
# Model
'model_type': 'single', # [single, simple, deepvoice]
'speaker_embedding_size': f(16),
'embedding_size': f(256),
'dropout_prob': 0.5,
# Encoder
'enc_prenet_sizes': [f(256), f(128)],
'enc_bank_size': 16,
'enc_bank_channel_size': f(128),
'enc_maxpool_width': 2,
'enc_highway_depth': 4,
'enc_rnn_size': f(128),
'enc_proj_sizes': [f(128), f(128)],
'enc_proj_width': 3,
# Attention
'attention_type': 'bah_mon', # ntm2-5
'attention_size': f(256),
'attention_state_size': f(256),
# Decoder recurrent network
'dec_layer_num': 2,
'dec_rnn_size': f(256),
# Decoder
'dec_prenet_sizes': [f(256), f(128)],
'post_bank_size': 8,
'post_bank_channel_size': f(256),
'post_maxpool_width': 2,
'post_highway_depth': 4,
'post_rnn_size': f(128),
'post_proj_sizes': [f(256), 80], # num_mels=80
'post_proj_width': 3,
'reduction_factor': 4,
})
if False: # Deep Voice 2 AudioBook Dataset
basic_params.update({
'dropout_prob': 0.8,
'attention_size': f(512),
'dec_prenet_sizes': [f(256), f(128), f(64)],
'post_bank_channel_size': f(512),
'post_rnn_size': f(256),
'reduction_factor': 5, # changed from 4
})
elif False: # Deep Voice 2 VCTK dataset
basic_params.update({
'dropout_prob': 0.8,
#'attention_size': f(512),
#'dec_prenet_sizes': [f(256), f(128)],
#'post_bank_channel_size': f(512),
'post_rnn_size': f(256),
'reduction_factor': 5,
})
elif True: # Single Speaker
basic_params.update({
'dropout_prob': 0.5,
'attention_size': f(128),
'post_bank_channel_size': f(128),
#'post_rnn_size': f(128),
'reduction_factor': 5, #chhanged from 4
})
elif False: # Single Speaker with generalization
basic_params.update({
'dropout_prob': 0.8,
'attention_size': f(256),
'dec_prenet_sizes': [f(256), f(128), f(64)],
'post_bank_channel_size': f(128),
'post_rnn_size': f(128),
'reduction_factor': 4,
})
basic_params.update({
# Training
'batch_size': 32,
'adam_beta1': 0.9,
'adam_beta2': 0.999,
'use_fixed_test_inputs': False,
'initial_learning_rate': 0.001,
'decay_learning_rate_mode': 0, # True in deepvoice2 paper
'initial_data_greedy': True,
'initial_phase_step': 8000,
'main_data_greedy_factor': 0,
'main_data': [''],
'prioritize_loss': False,
'recognition_loss_coeff': 0.2,
'ignore_recognition_level': 0, # 0: use all, 1: ignore only unmatched_alignment, 2: fully ignore recognition
# Eval
'min_tokens': 50,#originally 50, 30 is good for korean,
'min_iters': 30,
'max_iters': 200,
'skip_inadequate': False,
'griffin_lim_iters': 60,
'power': 1.5, # Power to raise magnitudes to prior to Griffin-Lim
})
# Default hyperparameters:
hparams = tf.contrib.training.HParams(**basic_params)
def hparams_debug_string():
values = hparams.values()
hp = [' %s: %s' % (name, values[name]) for name in sorted(values)]
return 'Hyperparameters:\n' + '\n'.join(hp)