forked from Xiaoccer/ReID-PCB_RPP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
182 lines (151 loc) · 5.51 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import torch
import torch.nn as nn
from torch.nn import init
from torchvision import models
from torch.autograd import Variable
######################################################################
def weights_init_kaiming(m):
classname = m.__class__.__name__
if classname.find('Conv2d') != -1:
init.kaiming_normal_(m.weight.data, mode='fan_out', nonlinearity='relu')
elif classname.find('Linear') != -1:
init.kaiming_normal(m.weight.data, a=0, mode='fan_out')
init.constant(m.bias.data, 0.0)
elif classname.find('BatchNorm1d') != -1:
init.normal(m.weight.data, 1.0, 0.02)
init.constant(m.bias.data, 0.0)
elif classname.find('BatchNorm2d') != -1:
init.constant(m.weight.data, 1)
init.constant(m.bias.data, 0)
def weights_init_classifier(m):
classname = m.__class__.__name__
if classname.find('Linear') != -1:
init.normal(m.weight.data, std=0.001)
init.constant(m.bias.data, 0.0)
# Defines the new fc layer and classification layer
# |--Linear--|--bn--|--relu--|--Linear--|
class ClassBlock(nn.Module):
def __init__(self, input_dim, class_num, relu=True, num_bottleneck=512):
super(ClassBlock, self).__init__()
add_block = []
add_block += [nn.Conv2d(input_dim, num_bottleneck, kernel_size=1, bias=False)]
add_block += [nn.BatchNorm2d(num_bottleneck)]
if relu:
#add_block += [nn.LeakyReLU(0.1)]
add_block += [nn.ReLU(inplace=True)]
add_block = nn.Sequential(*add_block)
add_block.apply(weights_init_kaiming)
classifier = []
classifier += [nn.Linear(num_bottleneck, class_num)]
classifier = nn.Sequential(*classifier)
classifier.apply(weights_init_classifier)
self.add_block = add_block
self.classifier = classifier
def forward(self, x):
x = self.add_block(x)
x = torch.squeeze(x)
x = self.classifier(x)
return x
# Define the RPP layers
class RPP(nn.Module):
def __init__(self):
super(RPP, self).__init__()
self.part = 6
add_block = []
add_block += [nn.Conv2d(2048, 6, kernel_size=1, bias=False)]
add_block = nn.Sequential(*add_block)
add_block.apply(weights_init_kaiming)
norm_block = []
norm_block += [nn.BatchNorm2d(2048)]
norm_block += [nn.ReLU(inplace=True)]
# norm_block += [nn.LeakyReLU(0.1, inplace=True)]
norm_block = nn.Sequential(*norm_block)
norm_block.apply(weights_init_kaiming)
self.add_block = add_block
self.norm_block = norm_block
self.softmax = nn.Softmax(dim=1)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
def forward(self, x):
w = self.add_block(x)
p = self.softmax(w)
y = []
for i in range(self.part):
p_i = p[:, i, :, :]
p_i = torch.unsqueeze(p_i, 1)
y_i = torch.mul(x, p_i)
y_i = self.norm_block(y_i)
y_i = self.avgpool(y_i)
y.append(y_i)
f = torch.cat(y, 2)
return f
# Part Model proposed in Yifan Sun etal. (2018)
class PCB(nn.Module):
def __init__(self, class_num):
super(PCB, self).__init__()
self.part = 6
# resnet50
resnet = models.resnet50(pretrained=True)
# remove the final downsample
resnet.layer4[0].downsample[0].stride = (1, 1)
resnet.layer4[0].conv2.stride = (1, 1)
modules = list(resnet.children())[:-2]
self.backbone = nn.Sequential(*modules)
self.avgpool = nn.AdaptiveAvgPool2d((self.part, 1))
self.dropout = nn.Dropout(p=0.5)
# define 6 classifiers
self.classifiers = nn.ModuleList()
for i in range(self.part):
self.classifiers.append(ClassBlock(2048, class_num, True, 256))
def forward(self, x):
x = self.backbone(x)
x = self.avgpool(x)
x = self.dropout(x)
part = {}
predict = {}
# get six part feature batchsize*2048*6
for i in range(self.part):
part[i] = x[:, :, i, :]
part[i] = torch.unsqueeze(part[i], 3)
# print part[i].shape
predict[i] = self.classifiers[i](part[i])
y = []
for i in range(self.part):
y.append(predict[i])
return y
def convert_to_rpp(self):
self.avgpool = RPP()
return self
class PCB_test(nn.Module):
def __init__(self, model, featrue_H=False):
super(PCB_test, self).__init__()
self.part = 6
self.featrue_H = featrue_H
self.backbone = model.backbone
self.avgpool = model.avgpool
self.classifiers = nn.ModuleList()
for i in range(self.part):
self.classifiers.append(model.classifiers[i].add_block)
def forward(self, x):
x = self.backbone(x)
x = self.avgpool(x)
if self.featrue_H:
part = {}
predict = {}
# get six part feature batchsize*2048*6
for i in range(self.part):
part[i] = x[:, :, i, :]
part[i] = torch.unsqueeze(part[i], 3)
predict[i] = self.classifiers[i](part[i])
y = []
for i in range(self.part):
y.append(predict[i])
x = torch.cat(y, 2)
f = x.view(x.size(0), x.size(1), x.size(2))
return f
# debug model structure
net = PCB(751)
net = net.convert_to_rpp()
print(net)
input = Variable(torch.FloatTensor(8, 3, 7, 7))
output = net(input)
# print(output[0].shape)