
Preliminary Comments

decentraland 5
Apr 5th, 2022

Table of Contents
Summary

Overview
Project Summary

Audit Summary

Vulnerability Summary

Audit Scope

Understandings
External Dependencies

Privileged Roles

Findings
LAN-01 : Centralization Related Risks

LAN-02 : Users cannot easily revoke approvals on their assets

LAN-03 : Third Party Dependencies

LAN-04 : Missing Access Control for the Function `initialize()`

LAN-05 : Unlocked Compiler Version

LAN-06 : Code Redundancy

LAN-07 : Missing Emit Events

LAN-08 : Potential Reentrancy Issue

LAN-09 : Discussion of the Transfer to `EstateRegistry`

Appendix

Disclaimer

About

decentraland 5 Preliminary Commentsdecentraland 5 Preliminary Comments

Summary
This report has been prepared for decentraland 5 to discover issues and vulnerabilities in the source code

of the decentraland 5 project as well as any contract dependencies that were not part of an officially

recognized library. A comprehensive examination has been performed, utilizing Static Analysis and Manual

Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced

by industry leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend

addressing these findings to ensure a high level of security standards and industry practices. We suggest

recommendations that could better serve the project from the security perspective:

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in

public;

Provide more transparency on privileged activities once the protocol is live.

decentraland 5 Preliminary Comments

Overview

Project Summary

Project Name decentraland 5

Platform Ethereum

Language Solidity

Codebase https://etherscan.io/address/0x554bb6488ba955377359bed16b84ed0822679cdc#code

Commit

Audit Summary

Delivery Date Apr 05, 2022 UTC

Audit Methodology Static Analysis, Manual Review

Vulnerability Summary

Vulnerability Level Total Pending Declined Acknowledged Mitigated Partially Resolved Resolved

Critical 0 0 0 0 0 0 0

Major 1 1 0 0 0 0 0

Medium 1 1 0 0 0 0 0

Minor 1 1 0 0 0 0 0

Informational 5 5 0 0 0 0 0

Discussion 1 1 0 0 0 0 0

decentraland 5 Preliminary Comments

https://etherscan.io/address/0x554bb6488ba955377359bed16b84ed0822679cdc#code

Audit Scope

ID File SHA256 Checksum

LAN LANDRegistry.sol dda075ca939983b95866e8577c620e3e40244ae9c42dea7890bc5f06e840630c

decentraland 5 Preliminary Comments

Understandings

Decentraland has created a contract that stores the LAND registry: LANDRegistry . The purpose the audit

was to audit this contract.

External Dependencies

There are a few depending injection contracts or addresses in the current project:

IEstateRegistry estateRegistry , IMiniMeToken landBalance , Storage , SafeMath , ERC165 .

We assume these vulnerable actors and implementing proper logic to collaborate with the current project.

Privileged Roles

To set up the project correctly, improve overall project quality and preserve upgradability, the following

roles are adopted in the codebase:

The proxyOwner role is adopted to configure some state variables, and add/remove deployer

accounts.

The deployer role is adopted to deploy parcels.

To improve the trustworthiness of the project, dynamic runtime updates in the project should be notified to

the community. Any plan to invoke the aforementioned functions should be also considered to move to the

execution queue of the Timelock contract.

decentraland 5 Preliminary Comments

Findings

ID Title Category Severity Status

LAN-01 Centralization Related Risks Centralization / Privilege Major Pending

LAN-02
Users cannot easily revoke approvals on their

assets
Logical Issue Medium Pending

LAN-03 Third Party Dependencies Volatile Code Minor Pending

LAN-04
Missing Access Control for the Function

initialize()
Control Flow Informational Pending

LAN-05 Unlocked Compiler Version Language Specific Informational Pending

LAN-06 Code Redundancy
Gas Optimization, Coding

Style
Informational Pending

LAN-07 Missing Emit Events Language Specific Informational Pending

LAN-08 Potential Reentrancy Issue Logical Issue Informational Pending

LAN-09
Discussion of the Transfer to

EstateRegistry
Logical Issue Discussion Pending

decentraland 5 Preliminary Comments

9
Total Issues

Critical 0 (0.00%)

Major 1 (11.11%)

Medium 1 (11.11%)

Minor 1 (11.11%)

Informational 5 (55.56%)

Discussion 1 (11.11%)

LAN-01 | Centralization Related Risks

Category Severity Location Status

Centralization / Privilege Major LANDRegistry.sol Pending

Description

In the contract LANDRegistry , the role proxyOwner has authority over the following functions:

authorizeDeploy() : Add a deployer address;

forbidDeploy() : Remove a deployer address;

setEstateRegistry() : Configure the state variable estateRegistry ;

setLandBalanceToken() : Modify the state variable landBalance .

setLatestToNow() : update the latestPing value of a given user.

Any compromise to the proxyOwner account may allow a hacker to take advantage of this authority and

assign parcels to himself, or disrupt entirely the behavior of the contract.

In the contract LANDRegistry , the role deployer has authority over the following functions:

assignNewParcel() / assignMultipleParcels() : Assign parcel(s) of chosen coordinates to users.

Any compromise to the deployer account may allow a hacker to take advantage of this authority and

assign parcels to himself.

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security

operation and level of decentralization, which in most cases cannot be resolved entirely at the present

stage. We advise the client to carefully manage the privileged account's private key to avoid any potential

risks of being hacked. In general, we strongly recommend centralized privileges or roles in the protocol be

improved via a decentralized mechanism or smart-contract-based accounts with enhanced security

practices, e.g., multi-signature wallets.

Indicatively, here are some feasible suggestions that would also mitigate the potential risk at a different

level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a

single point of key management failure.

decentraland 5 Preliminary Comments

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with

the public audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement;

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information

with the public audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles;

OR

Remove the risky functionality.

Noted: Recommend considering the long-term solution or the permanent solution. The project team shall

make a decision based on the current state of their project, timeline, and project resources.

decentraland 5 Preliminary Comments

LAN-02 | Users Cannot Easily Revoke Approvals On Their Assets

Category Severity Location Status

Logical Issue Medium LANDRegistry.sol Pending

Description

Users have the possibility to add operators on their assets with the setApprovalForAll() function. An

operator is a third-party role that is allowed to manage the users assets.

The operator has privileged access over the user account; especially, operators can approve the assets

of the user (with approve() function), in order to perform a _doTransferFrom() .

In case the operator becomes malicious, users can revoke the operator by calling

setApprovalForAll(address operator, false) .

However, the user will also want to revoke all approvals performed by the malicious operator. Currently, this

is not easily possible, users would have to call approve() with a new operator on all their assets, which is

not intuitive or quick to do.

In case of emergency, users should be able to revoke all approvals on their assets quickly.

Recommendation

A function should be implemented, only callable by the user, in order to easily clear all approvals over their

assets.

decentraland 5 Preliminary Comments

LAN-03 | Third Party Dependencies

Category Severity Location Status

Volatile Code Minor LANDRegistry.sol: 176 Pending

Description

The contract is serving as the underlying entity to interact with third party landBalance , estateRegistry

protocols. The scope of the audit treats 3rd party entities as black boxes and assumes their functional

correctness. However, in the real world, 3rd parties can be compromised and this may lead to lost or

stolen assets. In addition, upgrades of 3rd parties can possibly create severe impacts, such as increasing

fees of 3rd parties, migrating to new LP pools, etc.

The functions landBalance.balanceOf() , landBalance.generateTokens() ,

landBalance.destroyTokens() , estateRegistry.ownerOf() , estateRegistry.mint() are called in the

contract LANDRegistry .

Recommendation

We understand that the business logic of LANDRegistry requires interaction with landBalance ,

estateRegistry , etc. We encourage the team to constantly monitor the statuses of 3rd parties to mitigate

the side effects when unexpected activities are observed.

decentraland 5 Preliminary Comments

LAN-04 | Missing Access Control For The Function initialize()

Category Severity Location Status

Control Flow Informational LANDRegistry.sol: 964 Pending

Description

According to the following codes, the function initialize() is used to initialize the value of variables

_name/_symbol/_description in the contract LANDRegistry .

968968 functionfunction initializeinitialize((bytesbytes)) externalexternal {{
969969 _name _name == "Decentraland LAND""Decentraland LAND";;
970970 _symbol _symbol == "LAND""LAND";;
971971 _description _description == "Contract that stores the Decentraland LAND registry""Contract that stores the Decentraland LAND registry";;
972972 }}

However, in the function initialize() , the caller is not checked and the function can be called

repeatedly.

As a result, the function initialize() can be called by anyone to update the value of these variables after

the development team deployed the contract and initialized it.

The impact is however very limited since the variables cannot be modified.

Recommendation

It is recommended to add :

Access controls over the function initialize() ;

The validation to check if the contract has been initialized.

decentraland 5 Preliminary Comments

LAN-05 | Unlocked Compiler Version

Category Severity Location Status

Language Specific Informational LANDRegistry.sol Pending

Description

The contract has an unlocked compiler version. An unlocked compiler version in the source code of the

contract permits the user to compile it at or above a particular version. This, in turn, leads to differences in

the generated bytecode between compilations due to differing compiler version numbers. This can lead to

ambiguity when debugging as compiler-specific bugs may occur in the codebase that would be hard to

identify over a span of multiple compiler versions rather than a specific one.

Additionally, it has been noticed that all contracts are compiled with the compiler version over 0.4.24 ,

which dates from May 2018. It is recommended to update the compiler versions in the contracts, so they

are not exposed to potential security issues related to old compiler versions.

Recommendation

We advise that the compiler version is instead locked at the lowest version possible that the contract can

be compiled at. For example, for version v0.4.24 the contract should contain the following line:

pragma solidity 0.4.24;pragma solidity 0.4.24;

In the long term, if the contracts are compatible with the version v0.8.0 , it is recommended to use

v0.8.0 .

decentraland 5 Preliminary Comments

LAN-06 | Code Redundancy

Category Severity Location Status

Gas Optimization, Coding Style Informational LANDRegistry.sol: 165, 581, 594, 983 Pending

Description

The variable _deprecated_authorizedDeploy in LANDStorage is never used in LANDRegistry .

165165 mappingmapping ((addressaddress =>=> boolbool)) internalinternal _deprecated_authorizedDeploy _deprecated_authorizedDeploy;;

The modifiers onlyHolder and onlyOwnerOf are defined but never used in the contract:

594594 modifiermodifier onlyHolderonlyHolder((uint256uint256 assetId assetId)) {{
595595 requirerequire((_ownerOf_ownerOf((assetIdassetId)) ==== msg msg..sendersender));;
596596 __;;
597597 }}

983983 modifiermodifier onlyOwnerOfonlyOwnerOf((uint256uint256 assetId assetId)) {{
984984 requirerequire((
985985 msg msg..sender sender ==== _ownerOf_ownerOf((assetIdassetId)),,
986986 "This function can only be called by the owner of the asset""This function can only be called by the owner of the asset"
987987));;
988988 __;;
989989 }}

Additionally, the internal function _destroy is not used in the contract:

581581 functionfunction _destroy_destroy((uint256uint256 assetId assetId)) internalinternal {{
582582 addressaddress holder holder == _holderOf _holderOf[[assetIdassetId]];;
583583 requirerequire((holder holder !=!= 00));;
584584
585585 _removeAssetFrom_removeAssetFrom((holderholder,, assetId assetId));;
586586
587587 emitemit TransferTransfer((holderholder,, 00,, assetId assetId));;
588588 }}

Recommendation

It is recommended to remove the redundant codes if it is not intended to be used.

decentraland 5 Preliminary Comments

LAN-07 | Missing Emit Events

Category Severity Location Status

Language Specific Informational LANDRegistry.sol: 200 Pending

Description

In the contract Ownable , the ownership change does not emit an event to pass the changes out of chain

as a notification.

198198 functionfunction transferOwnershiptransferOwnership((addressaddress _newOwner _newOwner)) publicpublic onlyOwner onlyOwner {{
199199 requirerequire((_newOwner _newOwner !=!= owner owner,, "Cannot transfer to yourself""Cannot transfer to yourself"));;
200200 owner owner == _newOwner _newOwner;;
201201 }}

Recommendation

It is recommended to emit an event in the function transferOwnership() , which updates an essential

state variable.

decentraland 5 Preliminary Comments

LAN-08 | Potential Reentrancy Issue

Category Severity Location Status

Logical Issue Informational LANDRegistry.sol: 690~694 Pending

Description

In the ERC721Base contract, _doTransferFrom will call _moveToken() function, which triggers

onERC721Received() callback of the receiver contract.

688688 ifif ((doCheck doCheck &&&& _isContract_isContract((toto)))) {{
689689 // Equals to// Equals to
`bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))
690690 requirerequire((
691691 IERC721ReceiverIERC721Receiver((toto))..onERC721ReceivedonERC721Received((
692692 msg msg..sendersender,, holder holder,, assetId assetId,, userData userData
693693)) ==== ERC721_RECEIVED ERC721_RECEIVED
694694));;
695695 }}

However, this external function invocation (onERC721Received()) leads to a security loophole. Specifically,

the attacker can perform a reentrant call inside the onERC721Received() callback.

Note that this will not cause any actual attack in the current audit scope. However, contracts that interact

with this contract/function should be aware of the potential reentrancy attack vector.

Recommendation

In the short term, when interacting with this function/contract, follow the check-effect-interaction pattern or

use Openzeppelin's "nonReentrant" library.

In the long term, determine if the callback function is required or not. It could be removed to reduce the

reentrancy attack vector if it is not intended.

decentraland 5 Preliminary Comments

LAN-09 | Discussion Of The Transfer To EstateRegistry

Category Severity Location Status

Logical Issue Discussion LANDRegistry.sol: 1183 Pending

Description

According to the codes in the function transferFrom() , the function is used to transfer the token of the

given assetId , and the address to is checked whether to be estateRegistry.

11841184 functionfunction transferFromtransferFrom((addressaddress fromfrom,, addressaddress to to,, uint256uint256 assetId assetId)) externalexternal {{
11851185 requirerequire((to to !=!= addressaddress((estateRegistryestateRegistry)),, "EstateRegistry unsafe transfers are"EstateRegistry unsafe transfers are

not allowed"not allowed"));;
11861186
11871187 }}

Both the functions transferLand() and transferManyLand() can transfer the token with the tokenId

encoded the given x and y . However, the address to is not checked here.

The function transferFrom() takes the parameter doCheck as false when calling _doTransferFrom() ,

differs from the two other functions. In the two others functions, the following codes will trigger if the

address to is estateRegistry and estateRegistry is a contract.

688688 ifif ((doCheck doCheck &&&& _isContract_isContract((toto)))) {{
689689 // Equals to// Equals to
`bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))
690690 requirerequire((
691691 IERC721ReceiverIERC721Receiver((toto))..onERC721ReceivedonERC721Received((
692692 msg msg..sendersender,, holder holder,, assetId assetId,, userData userData
693693)) ==== ERC721_RECEIVED ERC721_RECEIVED
694694));;
695695 }}

Depending on the implementation of the estateRegistry , the transfer would fail when the

IERC721Receiver(to).onERC721Received() would not succeed. However, it's not sure as

estateRegistry is out of the scope of the audit and the implementation is unknown here.

Recommendation

The auditors would like to know if this is an intended behavior.

decentraland 5 Preliminary Comments

Appendix

Finding Categories

Centralization / Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that act

against the nature of decentralization, such as explicit ownership or specialized access roles in

combination with a mechanism to relocate funds.

Gas Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more optimal

EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Logical Issue

Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Control Flow

Control Flow findings concern the access control imposed on functions, such as owner-only functions

being invoke-able by anyone under certain circumstances.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that may

result in a vulnerability.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of private or

delete.

Coding Style

Coding Style findings usually do not affect the generated byte-code but rather comment on how to make

the codebase more legible and, as a result, easily maintainable.

Checksum Calculation Method

decentraland 5 Preliminary Comments

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2

with digest size of 256 bits) digest of the content of each file hosted in the listed source repository under

the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command

against the target file.

decentraland 5 Preliminary Comments

Disclaimer
This report is subject to the terms and conditions (including without limitation, description of services,

confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of

services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the

Agreement. This report provided in connection with the Services set forth in the Agreement shall be used

by the Company only to the extent permitted under the terms and conditions set forth in the Agreement.

This report may not be transmitted, disclosed, referred to or relied upon by any person for any purposes,

nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or

team. This report is not, nor should be considered, an indication of the economics or value of any

“product” or “asset” created by any team or project that contracts CertiK to perform a security

assessment. This report does not provide any warranty or guarantee regarding the absolute bug-free

nature of the technology analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any

particular project. This report in no way provides investment advice, nor should be leveraged as investment

advice of any sort. This report represents an extensive assessing process intending to help our customers

increase the quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is

that each company and individual are responsible for their own due diligence and continuous security.

CertiK’s goal is to help reduce the attack vectors and the high level of variance associated with utilizing

new and consistently changing technologies, and in no way claims any guarantee of security or

functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing

development. You agree that your access and/or use, including but not limited to any services, reports,

and materials, will be at your sole risk on an as-is, where-is, and as-available basis. Cryptographic tokens

are emergent technologies and carry with them high levels of technical risk and uncertainty. The

assessment reports could include false positives, false negatives, and other unpredictable results. The

services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS,

OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS

decentraland 5 Preliminary Comments

AVAILABLE” AND WITH ALL FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE

MAXIMUM EXTENT PERMITTED UNDER APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL

WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE

SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT LIMITING THE FOREGOING,

CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK

MAKES NO WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT,

WORK PRODUCT, OR OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF,

WILL MEET CUSTOMER’S OR ANY OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED

RESULT, BE COMPATIBLE OR WORK WITH ANY SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE

SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL CODE, OR ERROR-FREE. WITHOUT LIMITATION

TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR UNDERTAKING, AND MAKES NO

REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S REQUIREMENTS,

ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY

PERFORMANCE OR RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR

DEFECTS CAN OR WILL BE CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY,

RELIABILITY, OR CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE

SERVICE. CERTIK WILL ASSUME NO LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES,

OR INACCURACIES OF CONTENT AND MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND

INCURRED AS A RESULT OF THE USE OF ANY CONTENT, OR (II) ANY PERSONAL INJURY OR

PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING FROM CUSTOMER’S ACCESS TO

OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY

OF OR CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE

THIRD-PARTY OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY

PROVIDED TO CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY

PURPOSE NOT SPECIFICALLY IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO,

ANY OTHER PERSON WITHOUT CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR

OTHER BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING

decentraland 5 Preliminary Comments

MATERIALS AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST

CERTIK WITH RESPECT TO SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING

MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE

SOLELY FOR THE BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING

ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH

REPRESENTATIONS AND WARRANTIES AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF

CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH REPRESENTATIONS OR WARRANTIES OR

ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION UNDER THIS AGREEMENT OR

OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS

OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX,

LEGAL, REGULATORY, OR OTHER ADVICE.

decentraland 5 Preliminary Comments

About
Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia

University, CertiK is a leading blockchain security company that serves to verify the security and

correctness of smart contracts and blockchain-based protocols. Through the utilization of our world-class

technical expertise, alongside our proprietary, innovative tech, we’re able to support the success of our

clients with best-in-class security, all whilst realizing our overarching vision; provable trust for all

throughout all facets of blockchain.

decentraland 5 Preliminary Comments

