This repository has been archived by the owner on Jun 2, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathsetup.py
executable file
·62 lines (55 loc) · 2.56 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#!/usr/bin/env python
from setuptools import setup, Extension
import numpy
try:
from Cython.Build import cythonize
use_cython = True
except ImportError:
use_cython = False
ext_modules = [Extension('hcluster._distance_wrap',
['hcluster/distance_wrap.c'],
include_dirs=[numpy.get_include()])]
if use_cython:
ext_modules += cythonize([Extension('hcluster._hierarchy',
['hcluster/_hierarchy.pyx'],
include_dirs=[numpy.get_include()])])
else:
ext_modules += [Extension('hcluster._hierarchy',
['hcluster/_hierarchy.c'],
include_dirs=[numpy.get_include()])]
setup(maintainer="Forest Gregg",
version="0.3.9",
name='dedupe-hcluster',
packages=['hcluster'],
maintainer_email="fgregg@datamade.us",
description="Hierarchical Clustering Algorithms (Information Theory)",
url="https://github.com/datamade/hcluster",
license="SciPy License (BSD Style)",
install_requires=["numpy>=1.10.4 ;python_version<'3.6'",
"numpy>=1.12.1 ;python_version=='3.6'",
"numpy>=1.15.0; python_version=='3.7'",
"numpy>=1.17.3; python_version=='3.8'",
"numpy; python_version>'3.8'"],
ext_modules=ext_modules,
long_description="""
This library provides Python functions for hierarchical clustering. Its features
include
* generating hierarchical clusters from distance matrices
* computing distance matrices from observation vectors
* computing statistics on clusters
* cutting linkages to generate flat clusters
* and visualizing clusters with dendrograms.
The interface is very similar to MATLAB's Statistics Toolbox API to make code
easier to port from MATLAB to Python/Numpy. The core implementation of this
library is in C for efficiency.
""",
keywords=['dendrogram', 'linkage', 'cluster', 'agglomorative', 'hierarchical', 'hierarchy', 'ward', 'distance'],
classifiers = ["Topic :: Scientific/Engineering :: Information Analysis",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Topic :: Scientific/Engineering :: Bio-Informatics",
"Programming Language :: Python",
"Operating System :: OS Independent",
"License :: OSI Approved :: BSD License",
"Intended Audience :: Science/Research",
"Development Status :: 4 - Beta"],
)