-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathrnn_lonely_integer.jl
288 lines (249 loc) · 9.71 KB
/
rnn_lonely_integer.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
"""
rnn_lonely_integer.jl: (c) Ozan Arkan Can, 2016
This example learns to find the lonely integer in an array where all
but one of the integers occur in pairs. The problem is taken from
[hackerrank](https://www.hackerrank.com/challenges/lonely-integer).
We feed elements into a recurrent neural network one by one, and we
get a prediction from the model after the final element.
To run the demo, simply `include("rnn_lonely_integer.jl")` and run
`LonelyInteger.train()`. You can provide the initial weights as an
optional argument to `train`, which should have the form
[Whx,Whh,bh,Woh,bo] where first three elements are the parameters of
the rnn and the last two are the parameters of the softmax classifier.
The function `LonelyInteger.weights(;h, vocab)` can be used to create
random starting weights for a recurrent neural network with hidden
size and vocab size. `train` also accepts the following keyword
arguments: `lr` specifies the learning rate, `N` gives the number of
instances that are used to train the model. `seqlength` specifies the
length of the input sequences and `limit` defines the range of the
elements (from 1 to limit). The running average cross entropy loss
and accuracy for the seen data will be printed after every 10k
instances and optimized parameters will be returned.
Data instances are created using `gendata`. It generates one instance
for a given sequence length and the limit parameter.
`test_example` takes trained weights and optional sequence length and
limit (must be same as the limit parameter used in the training)
parameters. It shows a generated sequence and prediction of the model
for that instance. You can test the performance of the model on
shorter or longer sequences than sequences used in training.
You can see an example experiment log at the end of the file.
"""
module LonelyInteger
using AutoGrad
function rnn_sequence(w, X; hidden=256)
h = zeros(Float32, hidden, 1)
for x in X
preh = w[1] * x + w[2] * h .+ w[3]
h = tanh(preh)
end
return h
end
function gendata(;seqlength=5, limit=20)
rnums = randperm(limit)
seq = rnums[1:(seqlength-1)]
append!(seq, rnums[1:(seqlength-1)])
push!(seq, rnums[seqlength])
function onehot(indx)
rep = zeros(Float32, limit, 1)
rep[indx, 1] = 1.0
return rep
end
onehotseq = map(onehot, seq)
y = onehotseq[end]
shuffle!(onehotseq)
return (onehotseq, y)
end
function predict(w, h)
return w[1] * h .+ w[2]
end
function loss(w, X, ygold)
hT = rnn_sequence(w[1:3], X)
ypred = predict(w[4:5], hT)
ynorm = ypred .- log(sum(exp(ypred),1))
-sum(ygold .* ynorm) / size(ygold,2)
end
function accuracy(w, X, ygold)
hT = rnn_sequence(w[1:3], X)
ypred = predict(w[4:5], hT)
acc = indmax(ypred) == indmax(ygold) ? 1 : 0
end
function train(; lr=.001, N=2000000, seqlength=7, limit=50, w=weights(;vocab=limit))
gradfun = grad(loss)
nextn = 1000
lss_avg = 0.0
acc_avg = 0.0
for n=1:N
seq, ygold = gendata(;seqlength=seqlength, limit=limit)
g = gradfun(w, seq, ygold)
sloss = loss(w, seq, ygold)
acc = accuracy(w, seq, ygold)
#update
for i=1:length(w); w[i] -= lr * g[i]; end
lss_avg = (n==1 ? sloss : 0.99 * lss_avg + 0.01 * sloss)
acc_avg = (n==1 ? acc : 0.99 * acc_avg + 0.01 * acc)
if acc_avg > 0.999
println((n, lss_avg, acc_avg))
break
end
(n == nextn) && (println((n,lss_avg, acc_avg)); nextn+=1000)
end
return w
end
function timing(; lr=.001, N=10, seqlength=15, limit=100, w=weights(;vocab=limit))
gradfun = grad(loss)
function onestep()
seq, ygold = gendata(;seqlength=seqlength, limit=limit);
g = gradfun(w, seq, ygold);
#update
for i=1:length(w); w[i] -= lr * g[i]; end
end
for n=1:N
gc_enable(false)
@time onestep()
gc_enable(true)
end
end
function gendata(;seqlength=5, limit=20)
rnums = randperm(limit)
dup = round(Int32, (seqlength - 1) / 2)
seq = rnums[1:dup]
append!(seq, rnums[1:dup])
push!(seq, rnums[dup+1])
function onehot(indx)
rep = zeros(Float32, limit, 1)
rep[indx, 1] = 1.0
return rep
end
onehotseq = map(onehot, seq)
y = onehotseq[end]
shuffle!(onehotseq)
return (onehotseq, y)
end
function weights(; hidden=256, vocab=50)
w = Any[]
push!(w, 0.1*randn(hidden,vocab))#W_hx
push!(w, 0.1*randn(hidden, hidden))#W_hh
push!(w, zeros(hidden))#b
push!(w, 0.1*randn(vocab, hidden))#W_oh
push!(w, zeros(vocab))#b
return w
end
function test_example(w; seqlength=5, limit=20)
seq, ygold = gendata(;seqlength=seqlength, limit=limit)
println("Sequence: $(map(indmax, seq))")
hT = rnn_sequence(w[1:3], seq)
ypred = predict(w[4:5], hT)
println("Gold: $(indmax(ygold)), Prediction: $(indmax(ypred))")
println("")
end
end # module
#=
RNNEXAMPLE.train(;N=2000000, lr=0.001, seqlength=7, limit=50)
(5000,3.9254147954712932,0.05823546687711375)
(15000,3.8347783596082543,0.09440094359889017)
(25000,3.865838169439587,0.09101518162802844)
(35000,3.5961692054202,0.10177853251884963)
(45000,3.591958750481305,0.09625938583918481)
(55000,3.7078481570065813,0.057749964095921785)
(65000,3.662092935174832,0.10045160364338919)
(75000,3.4344444000257703,0.09762542191839016)
(85000,3.5202308574219323,0.1188191211181203)
(95000,3.495033362578429,0.06985608240709526)
(105000,3.545338465844032,0.049726255706462094)
(115000,3.401478302792871,0.08356034017466722)
(125000,3.43937704044176,0.048482881898495034)
(135000,3.373317482719548,0.0783790938216713)
(145000,3.3968358146064377,0.07863264401047583)
(155000,3.3998308365038072,0.058176810199577385)
(165000,3.3854203953236857,0.05996116207383239)
(175000,3.294610861214726,0.05980160736874341)
(185000,3.2955473125602834,0.06772983554593635)
(195000,3.205354931780993,0.044352347305207276)
(205000,3.138209614524962,0.07289154771175269)
(215000,3.136330274070695,0.05219027884713963)
(225000,3.1472323635944233,0.06585019067290764)
(235000,3.2339883176082926,0.037801909117437194)
(245000,3.2237514125329967,0.03909466540726603)
(255000,3.1034637040730155,0.03435449802546742)
(265000,3.01630489214593,0.039125509093287075)
(275000,2.9492079233763255,0.0775554075728231)
(285000,2.924373808650891,0.08119570489621394)
(295000,2.88330660833433,0.045520738204591744)
(305000,2.9801444551347966,0.0720059839435539)
(315000,2.8292788451926425,0.07489431795574271)
(325000,2.9260810182274057,0.06557384998708969)
(335000,2.796193694704773,0.05329545095793585)
(345000,2.8496901913169976,0.07897440943301519)
(355000,2.712887418984886,0.07291655722670402)
(365000,2.765270516987435,0.06446038584847386)
(375000,2.6747343086015882,0.06450701435593854)
(385000,2.593207560038882,0.08195785777298324)
(395000,2.5675051588390225,0.12403903722792178)
(405000,2.440873241602668,0.1286490186185866)
(415000,2.3607913906119866,0.13948185811566524)
(425000,2.422550846616807,0.14491854838751542)
(435000,2.33712184509847,0.1649838142989618)
(445000,2.1728366766728686,0.23305804728313556)
(455000,2.294092413720761,0.21370029615442018)
(465000,2.229902398980125,0.22693723287288248)
(475000,2.0843636254568456,0.29324882274028424)
(485000,2.1690135942845052,0.25494423904147795)
(495000,2.029575497169476,0.2817808574311234)
(505000,2.018764740911919,0.31172281466469576)
(515000,2.0521509456935756,0.32065625642771545)
(525000,1.9296962540268194,0.30291575580380437)
(535000,1.6879912814679325,0.3863069741736311)
(545000,1.8727704996555408,0.4136314713530327)
(555000,1.6648456097910216,0.4396605024667052)
(565000,1.5993401016268955,0.4265090719822417)
(575000,1.5941809610605726,0.4890625982526005)
(585000,1.5426872216335419,0.4989237198379696)
(595000,1.4157123752145753,0.557825588505984)
(605000,1.3032705734715309,0.5745242115672833)
(615000,1.517168941868977,0.5324376419982895)
(625000,1.3540932023513743,0.5474682036807306)
(635000,1.4108951279140025,0.52847086791496)
(645000,1.267215396068737,0.6162706256838634)
(655000,1.1798962320204538,0.6393352147003012)
(665000,1.2345061003259454,0.6481249939547733)
(675000,1.1281916840470916,0.6672409938073572)
(685000,1.0237858905118933,0.7145218218525072)
(695000,0.8914707716711384,0.7717530434428677)
(705000,0.952238328309364,0.72362933798709)
(715000,0.9405367513063994,0.7123276652101643)
(725000,0.8679144953733816,0.7744618942551058)
(735000,0.8550557011342603,0.7791783970643467)
(745000,0.9217059218784082,0.706177293999402)
(755000,0.715502505327051,0.8481938405802976)
(765000,0.8175346060709452,0.7572529026629168)
(775000,0.720734279350491,0.8383031603696639)
(785000,0.7204544240456311,0.7612595785013923)
(795000,0.6605850089156964,0.8389512861661527)
(805000,0.6718430138799281,0.8148635994701189)
(815000,0.6393106793073713,0.8361706527781337)
(825000,0.6666348198783135,0.8435147218150201)
(835000,0.5988272323855302,0.8605988641604053)
(845000,0.6191561860954037,0.8627608081668675)
(855000,0.5832566163231246,0.9016319453333244)
(865000,0.47324692338257224,0.8717556367836733)
(875000,0.45557475839702866,0.9365387594669428)
(885000,0.4668700088971958,0.9122769421372297)
(895000,0.5099601910275182,0.8982515886371417)
(905000,0.47793319039539783,0.927460059393786)
(915000,0.45992243845045605,0.8965995653073635)
(925000,0.4391425468584585,0.8793919722708446)
(935000,0.3897434968359376,0.9662436695667682)
(945000,0.3646875053312192,0.9602772286117665)
(955000,0.3718836517601025,0.9254588034778205)
(965000,0.3392730076665364,0.9510296136308011)
(975000,0.3696439743946451,0.9440675204831033)
(985000,0.37081730190116174,0.9331734713781792)
(995000,0.32695742816382656,0.9343670214841164)
(1005000,0.3299650774822141,0.968463584172169)
(1015000,0.29854385060520233,0.96746614445897)
(1025000,0.3234709585760939,0.9681262164427642)
(1035000,0.2978435021693024,0.9771662701659236)
(1045000,0.2739979235617187,0.9861928981448081)
(1055000,0.26884869311505255,0.9657797242822954)
(1063063,0.24595387097191207,0.9990003244074369)
=#