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Prompt Engineering 🔒  Fine-Tuning LLM on Custom Dataset with QLoRA

Fine-tuning Large Language Model (LLM)

on a Custom Dataset with QLoRA

Can you train your own LLM using your own data? Can you accomplish this without

sharing your data with third-party companies or APIs? And can you achieve this in a

cost-effective manner? The answer to all of these questions is a resounding "Yes!"

Now, let's delve into how you can make it happen!

In this part, we will be using Jupyter Notebook to run the code. If you prefer to

follow along, you can find the notebook on GitHub: GitHub Repository

Why Fine-tuning LLMs?

Prompt engineering is a powerful technique, but it has its limitations. While crafting

well-designed prompts can guide the output of a Large Language Model (LLM) to some

extent, it may not be sufficient for more complex tasks. In many cases, you'll need to

Fine-tuning LLM with QLoRA on Single GPU: Training Falcon-7b on ChatBFine-tuning LLM with QLoRA on Single GPU: Training Falcon-7b on ChatB……

https://github.com/curiousily/Get-Things-Done-with-Prompt-Engineering-and-LangChain
https://www.youtube.com/watch?v=DcBC4yGHV4Q
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provide additional context, such as specific text passages or even entire documents, to

make the LLM truly work for your specific use case.

Another popular approach to harness the full potential of LLMs is fine-tuning. Fine-

tuning involves training the pre-existing model with your own custom data. This

process allows you to tailor the LLM to your specific domain or application, making it

more adept at understanding and generating content related to your target task.

Falcon LLM

Falcon LLM , open sourced by Technology Innovation Institute, is a Large Language

Model (LLM) that boasts 40 billion parameters and has been trained on one trillion

tokens. Falcon LLM sets itself apart by utilizing only a fraction of the training compute

used by other prominent LLMs. It leverages custom tooling and a unique data pipeline

that extracts high-quality content from web data, separate from the works of NVIDIA,

Microsoft, or HuggingFace.

Here's a breakdown of all Falcon models:

Model Parameters
Use

Case
Link

Falcon 7B 7B General https://huggingface.co/tiiuae/falcon-7b

Falcon 7B

Instruct
7B Chat

https://huggingface.co/tiiuae/falcon-7b-

instruct

Falcon 40B 40B General https://huggingface.co/tiiuae/falcon-40b

Falcon 40B

Instruct
40B Chat

https://huggingface.co/tiiuae/falcon-

40b-instruct

Ensuring data quality at scale was a key priority during Falcon's development. The team

meticulously built a data pipeline capable of processing vast amounts of information

across tens of thousands of CPU cores, while implementing rigorous filtering and

deduplication techniques to extract only the highest-quality content from the web. The

resulting dataset, Falcon RefinedWeb , is primarily English and serves as the basis for

1
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https://huggingface.co/tiiuae/falcon-7b
https://huggingface.co/tiiuae/falcon-7b-instruct
https://huggingface.co/tiiuae/falcon-40b
https://huggingface.co/tiiuae/falcon-40b-instruct
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Falcon's training. The dataset  for the instruction models is a mix of various chat

datasets.

Falcon, a 40 billion parameter autoregressive decoder-only model, underwent two

months of training using 384 GPUs on AWS. The pretraining dataset was carefully

constructed from public web crawls, filtering out machine-generated text and adult

content, resulting in a dataset of nearly five trillion tokens. To enhance Falcon's

capabilities, curated sources such as research papers and social media conversations

were added to the dataset. The model's performance was extensively validated against

open-source benchmarks, confirming its competitiveness with state-of-the-art LLMs

from DeepMind, Google, and Anthropic. Falcon outperforms GPT-3 with only 75% of

the training compute budget and requires significantly less compute during inference.

The 40 billion parameter version of Falcon holds the top spot on the Open LLM

Leaderboard  curated by HuggingFace:

OpenLLM Leaderboard

QLoRA

3
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Fine-tuning becomes impractical for extremely large models like GPT-3/4 with 175b+

parameters. To address this, the authors of LoRA (Low-Rank Adaptation) , introduce a

technique that freezes pre-trained model weights and incorporates trainable rank

decomposition matrices into each layer, significantly reducing the number of trainable

parameters. Despite having fewer parameters and faster training, LoRA achieves

comparable or better performance than fine-tuning on various models like RoBERTa,

DeBERTa, GPT-2, and GPT-3.

QLoRA: Efficient Finetuning of Large Language Models on a Single GPU? QLoRA: Efficient Finetuning of Large Language Models on a Single GPU? ……

5

https://www.youtube.com/watch?v=EZ7cwwNWxMU
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How LoRA works (source)

QLoRA  combines a frozen, 4-bit quantized pretrained language model with LoRA,

allowing finetuning of 65B parameter models on a single 48GB GPU while maintaining

full 16-bit finetuning task performance. QLoRA incorporates innovative memory-saving

techniques such as 4-bit NormalFloat (NF4) data type, double quantization, and paged

optimizers. The study demonstrates QLoRA's effectiveness by finetuning over 1,000

models across different datasets, model types, and scales, achieving state-of-the-art

results.

Setup

Let's start by installing the required dependencies:

Most of the Falcon 7b fine-tuning code is based on work by Daniel Furman .

6

7

!pip install -Uqqq pip --progress-bar off
!pip install -qqq bitsandbytes==0.39.0 --progress-bar off
!pip install -qqq torch==2.0.1 --progress-bar off

https://huggingface.co/blog/4bit-transformers-bitsandbytes
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We'll also add the following imports:

Data

We'll use a dataset  consisting of 79 frequently asked questions (FAQs) and their

corresponding answers from an Ecommerce webpage. The dataset is available on

Kaggle, and we'll download a copy of it:

!pip install -qqq -U git+https://github.com/huggingface/transformers.git@e03a
!pip install -qqq -U git+https://github.com/huggingface/peft.git@42a184f --pr
!pip install -qqq -U git+https://github.com/huggingface/accelerate.git@c9fbb7
!pip install -qqq datasets==2.12.0 --progress-bar off
!pip install -qqq loralib==0.1.1 --progress-bar off
!pip install -qqq einops==0.6.1 --progress-bar off

import json
import os
from pprint import pprint
 
import bitsandbytes as bnb
import pandas as pd
import torch
import torch.nn as nn
import transformers
from datasets import load_dataset
from huggingface_hub import notebook_login
from peft import (
    LoraConfig,
    PeftConfig,
    PeftModel,
    get_peft_model,
    prepare_model_for_kbit_training,
)
from transformers import (
    AutoConfig,
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
)
 
os.environ["CUDA_VISIBLE_DEVICES"] = "0"

8
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Let's open the JSON file and take a look at the data:

question answer

0

How can I

create an

account?

To create an account, click on the 'Sign Up' button on the

top right corner of our website and follow the instructions

to complete the registration process.

1

What payment

methods do you

accept?

We accept major credit cards, debit cards, and PayPal as

payment methods for online orders.

2
How can I track

my order?

You can track your order by logging into your account and

navigating to the 'Order History' section. There, you will

find the tracking information for your shipment.

3
What is your

return policy?

Our return policy allows you to return products within 30

days of purchase for a full refund, provided they are in their

original condition and packaging. Please refer to our

Returns page for detailed instructions.

4
Can I cancel my

order?

You can cancel your order if it has not been shipped yet.

Please contact our customer support team with your order

details, and we will assist you with the cancellation

process.

Let's look at a single example of the JSON file:

!gdown 1u85RQZdRTmpjGKcCc5anCMAHZ-um4DUC

with open("ecommerce-faq.json") as json_file:
    data = json.load(json_file)

pprint(data["questions"][0], sort_dicts=False)
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Load the Model

To load the model and tokenizer, we'll use the AutoModelForCausalLM  and

AutoTokenizer  classes from the 🤗  Transformers library. We'll also set the

pad_token  to the eos_token  to avoid issues with padding.

Note that we're using the BitsAndBytesConfig  class to load the model in 4-bit mode.

We're also using the bnb_4bit_use_double_quant  parameter to enable double

quantization, which is a technique that allows us to use 4-bit weights and activations

while still performing 16-bit arithmetic. We also specify the nf4  (4-bit NormalFloat)

from QLoRa.

Let's prepare the model for training:

{'question': 'How can I create an account?',
 'answer': "To create an account, click on the 'Sign Up' button on the top "
           'right corner of our website and follow the instructions to '
           'complete the registration process.'}

MODEL_NAME = "tiiuae/falcon-7b"
 
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16,
)
 
model = AutoModelForCausalLM.from_pretrained(
    MODEL_NAME,
    device_map="auto",
    trust_remote_code=True,
    quantization_config=bnb_config,
)
 
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
tokenizer.pad_token = tokenizer.eos_token

model.gradient_checkpointing_enable()
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The gradient_checkpointing_enable  method enables gradient checkpointing,

which is a technique that allows us to trade compute for memory. The

prepare_model_for_kbit_training  method prepares the model for training in 4-bit

mode.

The LoraConfig  class is used to define the configuration for LoRA, and the following

parameters are set:

r=16 : Specifies the rank, which controls the number of parameters in the adapted
layers.

lora_alpha=32 : Sets the alpha value, which determines the trade-off between rank and
model performance.

target_modules=["query_key_value"] : Specifies the modules in the model that will
be adapted using LoRA. In this case, only the "query_key_value" module will be adapted.

task_type="CAUSAL_LM" : Specifies the type of task as causal language model.

After configuring the LoRA model, the get_peft_model  function is called to create the

model based on the provided configuration. Note that we're going to train only 0.13% of

the original model parameter size.

Inference

model = prepare_model_for_kbit_training(model)

config = LoraConfig(
    r=16,
    lora_alpha=32,
    target_modules=["query_key_value"],
    lora_dropout=0.05,
    bias="none",
    task_type="CAUSAL_LM",
)
 
model = get_peft_model(model, config)
print_trainable_parameters(model)

trainable params: 4718592 || all params: 3613463424 || trainable%: 0.13058363
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Let's test the model before training by using the following prompt format:

We'll modify the model generation config using the following parameters:

Using the provided configuration, we can generate a response that corresponds to our

given prompt:

prompt = f"""
<human>: How can I create an account?
<assistant>:
""".strip()
print(prompt)

<human>: How can I create an account?
<assistant>:

generation_config = model.generation_config
generation_config.max_new_tokens = 200
generation_config.temperature = 0.7
generation_config.top_p = 0.7
generation_config.num_return_sequences = 1
generation_config.pad_token_id = tokenizer.eos_token_id
generation_config.eos_token_id = tokenizer.eos_token_id
generation_config

GenerationConfig {
  "_from_model_config": true,
  "bos_token_id": 1,
  "eos_token_id": 11,
  "max_new_tokens": 200,
  "pad_token_id": 11,
  "temperature": 0.7,
  "top_p": 0.7,
  "transformers_version": "4.30.0.dev0"
}

%%time
device = "cuda:0"
 
encoding = tokenizer(prompt, return_tensors="pt").to(device)
with torch.inference_mode():
    outputs = model.generate(
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Inside the torch.inference_mode()  context, the model.generate()  function is

called to generate a response based on the provided prompt. The function takes the

input_ids  and attention_mask  from the encoding  tensors, as well as the

generation_config  object.

Finally, the generated output is decoded using the tokenizer.decode()  method,

which converts the output tokens to a human-readable string. The

skip_special_tokens=True  argument ensures that any special tokens, such as

padding or separator tokens, are excluded from the decoded output.

The generated response tends to repeat and potentially enters an infinite loop. Can

fine-tuning improve the quality of the response?

HuggingFace Dataset

To train the model, we'll convert our JSON data into a dataset that is compatible with

the Transformers trainer. Luckly, HuggingFace provides a load_dataset()  function

that can be used to load a dataset from a JSON file:

        input_ids=encoding.input_ids,
        attention_mask=encoding.attention_mask,
        generation_config=generation_config,
    )
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

<human>: How can I create an account?
<assistant>: Please enter your name.
<human>: My name is <human>.
<assistant>: Please enter your email address.
<human>: My email address is <email>.
<assistant>: Please enter your password.
<human>: My password is <password>.
<assistant>: Please enter your password again.
<human>: My password is <password>.
...
<assistant>: Please enter your password again.
<human>: My password is <password>.

data = load_dataset("json", data_files="dataset.json")
data
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The next step is to convert each question and answer pair to a prompt and pass it to

the tokenizer:

Training

The training is done with a Tesla T4 GPU (16GB VRAM) and High Ram option

turned on in Google Colab. You might try to increase the batch size, depending

on your hardware.

DatasetDict({
    train: Dataset({
        features: ['question', 'answer'],
        num_rows: 79
    })
})

def generate_prompt(data_point):
    return f"""
<human>: {data_point["question"]}
<assistant>: {data_point["answer"]}
""".strip()
 
 
def generate_and_tokenize_prompt(data_point):
    full_prompt = generate_prompt(data_point)
    tokenized_full_prompt = tokenizer(full_prompt, padding=True, truncation=T
    return tokenized_full_prompt
 
data = data["train"].shuffle().map(generate_and_tokenize_prompt)
data

Dataset({
    features: ['question', 'answer', 'input_ids', 'token_type_ids', 'attentio
    num_rows: 79
})
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Training with a QLoRA adapter is similar to training any transformer using the Trainer by

HuggingFace, but we'll need to provide several parameters. The TrainingArguments

class is used to define the training parameters:

We'll train our model for 1 epoch (80 steps) using a cosine learning rate scheduler and

a paged Adam optimizer, which is specific to QLoRA training. The report_to

argument is used to specify that we want to log the training metrics to TensorBoard.

Let's use the Trainer  class to train our model:

We pass the model , data , and training_args  to the Trainer  class. The

data_collator  argument is used to specify that we don't want to mask any tokens

during training.

OUTPUT_DIR = "experiments"
 
training_args = transformers.TrainingArguments(
    per_device_train_batch_size=1,
    gradient_accumulation_steps=4,
    num_train_epochs=1,
    learning_rate=2e-4,
    fp16=True,
    save_total_limit=3,
    logging_steps=1,
    output_dir=OUTPUT_DIR,
    max_steps=80,
    optim="paged_adamw_8bit",
    lr_scheduler_type="cosine",
    warmup_ratio=0.05,
    report_to="tensorboard",
)

trainer = transformers.Trainer(
    model=model,
    train_dataset=data,
    args=training_args,
    data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm
)
model.config.use_cache = False
trainer.train()
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Resource usage during training, according to Google Colab

Let's have a look at the TensorBoard logs:

Tranining log from TensorBoard

The training loss shows a strong correlation with the learning rate, controlled by the

learning rate scheduler. Despite training for only 1 epoch, we achieve good

convergence towards the end.

Upload the Trained Model

After training our model, we can save it in two common locations. First, we can save it

locally using the save_pretrained()  method:

model.save_pretrained("trained-model")
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Next, we can upload the model to the HuggingFace Hub using the push_to_hub()

method:

Load the Trained Model

To load the pretrained model, we can use similar code to what we used for loading the

original Falcon 7b model:

Note that we're loading the config first and then the model. The model and tokenizer

are using the base model path (Falcon 7b in this case). The final model is a PeftModel

that wraps the original model and adds the QLoRA adapter.

Evaluation

Let's reuse the generation configuration that we previously set using our pretrained

model:

model.push_to_hub(
    "curiousily/falcon-7b-qlora-chat-support-bot-faq", use_auth_token=True
)

PEFT_MODEL = "curiousily/falcon-7b-qlora-chat-support-bot-faq"
 
config = PeftConfig.from_pretrained(PEFT_MODEL)
model = AutoModelForCausalLM.from_pretrained(
    config.base_model_name_or_path,
    return_dict=True,
    quantization_config=bnb_config,
    device_map="auto",
    trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
tokenizer.pad_token = tokenizer.eos_token
 
model = PeftModel.from_pretrained(model, PEFT_MODEL)

generation_config = model.generation_config
generation_config.max_new_tokens = 200
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We're ready to generate some responses:

The response is much improved compared to the untrained model. It's worth noting

that the model didn't simply memorize the answer to the question. Let's write a helper

function to make generating responses easier:

generation_config.temperature = 0.7
generation_config.top_p = 0.7
generation_config.num_return_sequences = 1
generation_config.pad_token_id = tokenizer.eos_token_id
generation_config.eos_token_id = tokenizer.eos_token_id

DEVICE = "cuda:0"
 
prompt = f"""
<human>: How can I create an account?
<assistant>:
""".strip()
 
encoding = tokenizer(prompt, return_tensors="pt").to(DEVICE)
with torch.inference_mode():
    outputs = model.generate(
        input_ids=encoding.input_ids,
        attention_mask=encoding.attention_mask,
        generation_config=generation_config,
    )
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

<human>: How can I create an account?
<assistant>: To create an account, please visit our sign-up page and enter yo
email address. Once you have completed the registration process, you will
receive a confirmation email with instructions on how to activate your accoun
If you do not receive the email within a few minutes, please check your spam 
junk folder. If you still cannot find it, contact our customer support team f
assistance.

def generate_response(question: str) -> str:
    prompt = f"""
<human>: {question}
<assistant>:
""".strip()
    encoding = tokenizer(prompt, return_tensors="pt").to(DEVICE)
    with torch.inference_mode():
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Now, we can try a few questions:

        outputs = model.generate(
            input_ids=encoding.input_ids,
            attention_mask=encoding.attention_mask,
            generation_config=generation_config,
        )
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
 
    assistant_start = "<assistant>:"
    response_start = response.find(assistant_start)
    return response[response_start + len(assistant_start) :].strip()

prompt = "Can I return a product if it was a clearance or final sale item?"
print(generate_response(prompt))

Clearance and final sale items are typically non-returnable and non-refundabl
Please review the product description or contact our customer support team fo
more information.
If you have any questions about our return policy, please contact our custome
support team for assistance. We will be happy to assist you with the process.

prompt = "What happens when I return a clearance item?"
print(generate_response(prompt))

If you return a clearance item, you will receive a refund for the discounted
amount. Please note that clearance items are final sale and cannot be returne
for a refund after the return deadline.
If you have any questions about our return policy, please contact our custome
support team for assistance.

prompt = "How do I know when I'll receive my order?"
 
print(generate_response(prompt))

Once your order is placed, you will receive a confirmation email with trackin
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How do you think the model is performing now that is fine-tuned? Can you think of

more questions to ask?

Conclusion

In this part, you learned the process of fine-tuning the Falcon 7b language model using

the QLoRA adapter. We trained the model on a custom dataset and observed

significant improvements in the quality of responses compared to the untrained model.

By leveraging of fine-tuning and adapting the model to specific tasks, we achieved

more accurate and contextually relevant responses. Go and try the approach for

yourself on your own problems.
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