
8/20/23, 7:15 AM Private Chatbot with Local LLM (Falcon 7B) and LangChain | MLExpert - Crush Your Machine Learning interview

https://www.mlexpert.io/prompt-engineering/chatbot-with-local-llm-using-langchain 1/13

Prompt Engineering Private Chatbot with Local LLM (Falcon 7B) and LangChain

Private Chatbot with Local LLM (Falcon

7B) and LangChain

Can you build a private Chatbot with ChatGPT-like performance using a local LLM on a

single GPU?

Mostly, yes! In this tutorial, we'll use Falcon 7B  with LangChain to build a chatbot that

retains conversation memory. We can achieve decent performance by utilizing a single

T4 GPU and loading the model in 8-bit (~6 tokens/second). We'll also explore

techniques to improve the output quality and speed, such as:

Stopping criteria: detect start of LLM "rambling" and stop the generation

Cleaning output: sometimes LLMs output strange/additional tokens, I'll show you how you

can clear those from the output

Store chat history: we'll use memory to make sure your LLM remembers the conversation

history

Build a Private Chatbot with Local LLM (Falcon 7B) and LangChainBuild a Private Chatbot with Local LLM (Falcon 7B) and LangChain

1

https://www.youtube.com/watch?v=N7dGOUwufBM


8/20/23, 7:15 AM Private Chatbot with Local LLM (Falcon 7B) and LangChain | MLExpert - Crush Your Machine Learning interview

https://www.mlexpert.io/prompt-engineering/chatbot-with-local-llm-using-langchain 2/13

In this part, we will be using Jupyter Notebook to run the code. If you prefer to

follow along, you can find the notebook on GitHub: GitHub Repository

Setup

Let's start by installing the required dependencies:

Here's the list of required imports:

Load Model

!pip install -Uqqq pip --progress-bar off
!pip install -qqq bitsandbytes==0.40.0 --progress-bar off
!pip install -qqq torch==2.0.1 --progress-bar off
!pip install -qqq transformers==4.30.0 --progress-bar off
!pip install -qqq accelerate==0.21.0 --progress-bar off
!pip install -qqq xformers==0.0.20 --progress-bar off
!pip install -qqq einops==0.6.1 --progress-bar off
!pip install -qqq langchain==0.0.233 --progress-bar off

import re
import warnings
from typing import List
 
import torch
from langchain import PromptTemplate
from langchain.chains import ConversationChain
from langchain.chains.conversation.memory import ConversationBufferWindowMemo
from langchain.llms import HuggingFacePipeline
from langchain.schema import BaseOutputParser
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    StoppingCriteria,
    StoppingCriteriaList,
    pipeline,
)
 
warnings.filterwarnings("ignore", category=UserWarning)

https://github.com/curiousily/Get-Things-Done-with-Prompt-Engineering-and-LangChain


8/20/23, 7:15 AM Private Chatbot with Local LLM (Falcon 7B) and LangChain | MLExpert - Crush Your Machine Learning interview

https://www.mlexpert.io/prompt-engineering/chatbot-with-local-llm-using-langchain 3/13

We can load the model directly from the Hugging Face model hub:

Note that we're loading the model in 8-bit mode. This will reduce the memory footprint

and speed up the inference. We're also using the device_map  parameter to load the

model on the GPU.

Config

We'll use a custom configuration for the text generation:

MODEL_NAME = "tiiuae/falcon-7b-instruct"
 
model = AutoModelForCausalLM.from_pretrained(
    MODEL_NAME, trust_remote_code=True, load_in_8bit=True, device_map="auto"
)
model = model.eval()
 
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)

generation_config = model.generation_config
generation_config.temperature = 0
generation_config.num_return_sequences = 1
generation_config.max_new_tokens = 256
generation_config.use_cache = False
generation_config.repetition_penalty = 1.7
generation_config.pad_token_id = tokenizer.eos_token_id
generation_config.eos_token_id = tokenizer.eos_token_id
generation_config

GenerationConfig {
    "_from_model_config": true,
    "bos_token_id": 1,
    "eos_token_id": 11,
    "max_new_tokens": 256,
    "pad_token_id": 11,
    "repetition_penalty": 1.7,
    "temperature": 0,
    "transformers_version": "4.30.0",
    "use_cache": false
}



8/20/23, 7:15 AM Private Chatbot with Local LLM (Falcon 7B) and LangChain | MLExpert - Crush Your Machine Learning interview

https://www.mlexpert.io/prompt-engineering/chatbot-with-local-llm-using-langchain 4/13

I like to set the temperature  to 0 to get deterministic results. We'll also set the

repetition_penalty  to 1.7 to reduce the chance (but not completely remove the

occurrences) of the model repeating itself.

Try the Model

We're ready to try the model. We'll use the tokenizer  to encode the prompt and then

pass the input_ids  to the model:

Note that we're putting the encoded input_ids  to the CUDA device before doing the

inference. We can use the tokenizer  to decode the output into a human-readable

format:

prompt = """
The following is a friendly conversation between a human and an AI. The AI is
talkative and provides lots of specific details from its context.
 
Current conversation:
 
Human: Who is Dwight K Schrute?
AI:
""".strip()
 
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
input_ids = input_ids.to(model.device)
 
with torch.inference_mode():
    outputs = model.generate(
        input_ids=input_ids,
        generation_config=generation_config,
    )

response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)

The following is a friendly conversation between a human and an AI. The AI is
talkative and provides lots of specific details from its context.
 
Current conversation:

LLM output



8/20/23, 7:15 AM Private Chatbot with Local LLM (Falcon 7B) and LangChain | MLExpert - Crush Your Machine Learning interview

https://www.mlexpert.io/prompt-engineering/chatbot-with-local-llm-using-langchain 5/13

The output contains the full prompt and the generated response. Not bad, right? Let's

see how we can improve it.

Stop the LLM From Rambling

LLMs often have a tendency to go off-topic and generate irrelevant or nonsensical

responses. While this is an ongoing research challenge, as a user of LLMs in real-world

applications, there are ways to work around this behavior. We'll address this issue using

a technique called StoppingCriteria  to help control the output and prevent the model

from rambling or hallucinating questions and conversations:

The __init__  method converts the tokens to their corresponding token IDs using the

tokenizer and stores them as stop_token_ids .

 
Human: Who is Dwight K Schrute?
AI: Dwight K Schrute is a fictional character
in the American television series "The Office". He is portrayed by actor Rain
Wilson and appears to be highly intelligent, but socially awkward and often
misinterprets social cues.
User

2

class StopGenerationCriteria(StoppingCriteria):
    def __init__(
        self, tokens: List[List[str]], tokenizer: AutoTokenizer, device: torc
    ):
        stop_token_ids = [tokenizer.convert_tokens_to_ids(t) for t in tokens]
        self.stop_token_ids = [
            torch.tensor(x, dtype=torch.long, device=device) for x in stop_to
        ]
 
    def __call__(
        self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwarg
    ) -> bool:
        for stop_ids in self.stop_token_ids:
            if torch.eq(input_ids[0][-len(stop_ids) :], stop_ids).all():
                return True
        return False



8/20/23, 7:15 AM Private Chatbot with Local LLM (Falcon 7B) and LangChain | MLExpert - Crush Your Machine Learning interview

https://www.mlexpert.io/prompt-engineering/chatbot-with-local-llm-using-langchain 6/13

The __call__  method is called during the generation process and takes input IDs as

input. It checks if the last few tokens in the input IDs match any of the stop_token_ids,

indicating that the model is starting to generate an undesired response. If a match is

found, it returns True, indicating that the generation should be stopped. Otherwise, it

returns False to continue the generation.

We'll implement a stopping criteria that detects when the LLM generates new tokens

starting with Human: or AI:. When such tokens are detected, the generation process

will be stopped to prevent undesired outputs:

We'll create a pipeline that incorporates the stopping criteria and our generation

configuration. This pipeline will handle the generation process and ensure that the

stopping criteria are applied to control the output:

The usage of our pipeline is as simple as passing the prompt to the pipeline:

stop_tokens = [["Human", ":"], ["AI", ":"]]
stopping_criteria = StoppingCriteriaList(
    [StopGenerationCriteria(stop_tokens, tokenizer, model.device)]
)

generation_pipeline = pipeline(
    model=model,
    tokenizer=tokenizer,
    return_full_text=True,
    task="text-generation",
    stopping_criteria=stopping_criteria,
    generation_config=generation_config,
)
 
llm = HuggingFacePipeline(pipeline=generation_pipeline)

res = llm(prompt)
print(res)



8/20/23, 7:15 AM Private Chatbot with Local LLM (Falcon 7B) and LangChain | MLExpert - Crush Your Machine Learning interview

https://www.mlexpert.io/prompt-engineering/chatbot-with-local-llm-using-langchain 7/13

Notice that User  at the end of the generated text? We'll take care of that in a bit.

Conversation Chain

To engage in a conversation with the LLM, we'll utilize a ConversationChain from

LangChain:

This chain already provides a default prompt, which is suitable for general purposes.

However, it might not be ideal for our specific use case. Let's customize the prompt to

better align with our needs.

Custom Prompt

Imagine you're launching a new company and you need the AI to come up with a name,

slogan, and marketing materials. As a huge fan of Dwight K. Schrute, you want to infuse

Dwight K Schrute is a fictional character in the American television series
"The Office". He is portrayed by actor Rainn Wilson and appears to be highly
intelligent, but socially awkward and often misinterprets social cues.
User

chain = ConversationChain(llm=llm)
print(chain.prompt.template)

The following is a friendly conversation between a human and an AI. The AI is
talkative and provides lots of specific details from its context. If the AI d
know the answer to a question, it truthfully says it does not know.
 
Current conversation:
{history}
Human: {input}
AI:

Pipeline output



8/20/23, 7:15 AM Private Chatbot with Local LLM (Falcon 7B) and LangChain | MLExpert - Crush Your Machine Learning interview

https://www.mlexpert.io/prompt-engineering/chatbot-with-local-llm-using-langchain 8/13

his unique style into the AI-generated content. Let's combine these two elements and

leverage the power of AI to fulfill your creative urges with this prompt:

Although the provided prompt is a good starting point, feel free to make any

adjustments you like. Now, let's ensure that our chatbot has the ability to remember our

previous conversation context while addressing the current question:

With the addition of the ConversationBufferWindowMemory , we can now store a

limited number ( k ) of the most recent messages as a conversation history. This

memory will be injected into the chain when posing new prompts. Let's test our

updated chain with the inclusion of this memory feature:

template = """
The following is a conversation between a human an AI. The AI acts exactly
like Dwight K Schrute from the TV show The Office. Dwight is an experienced a
very successful online marketer and salesperson. He is witty, persuasive,
uncensored, direct and practical. Dwight helps with every marketing task is g
If Dwight does not know the answer to a question, he truthfully says he does 
know.
 
Current conversation:
{history}
Human: {input}
AI:""".strip()
 
prompt = PromptTemplate(input_variables=["history", "input"], template=templa

memory = ConversationBufferWindowMemory(
    memory_key="history", k=6, return_only_outputs=True
)
 
chain = ConversationChain(llm=llm, memory=memory, prompt=prompt, verbose=True

text = "Think of a name for automaker that builds family cars with big V8 eng
res = chain.predict(input=text)
print(res)



8/20/23, 7:15 AM Private Chatbot with Local LLM (Falcon 7B) and LangChain | MLExpert - Crush Your Machine Learning interview

https://www.mlexpert.io/prompt-engineering/chatbot-with-local-llm-using-langchain 9/13

Verbose output

Looks good except the addition of User  at the end of the generated text. Let's fix that

in the next section.

Cleaning Output

To ensure clean output from our chatbot, we will customize the behavior by extending

the base OutputParser  class from LangChain. While output parsers  are typically

used to extract structured responses from LLMs, in this case, we will create one

specifically to remove the trailing user string from the generated output:

We need to pass this output parser to our chain to ensure that it is applied to the

generated output:

SchruteAuto
User

3

class CleanupOutputParser(BaseOutputParser):
    def parse(self, text: str) -> str:
        user_pattern = r"\nUser"
        text = re.sub(user_pattern, "", text)
        human_pattern = r"\nHuman:"
        text = re.sub(human_pattern, "", text)
        ai_pattern = r"\nAI:"
        return re.sub(ai_pattern, "", text).strip()
 
    @property
    def _type(self) -> str:
        return "output_parser"

memory = ConversationBufferWindowMemory(
    memory_key="history", k=6, return_only_outputs=True
)
 
chain = ConversationChain(
    llm=llm,
    memory=memory,
    prompt=prompt,

Chain output



8/20/23, 7:15 AM Private Chatbot with Local LLM (Falcon 7B) and LangChain | MLExpert - Crush Your Machine Learning interview

https://www.mlexpert.io/prompt-engineering/chatbot-with-local-llm-using-langchain 10/13

Chat with the AI

To utilize the output parser, we can invoke the chain as if it were a function, enabling us

to apply the parsing logic to the generated output:

Verbose output

The result is a dictionary containing the input, history, and response:

This is the new response:

Great! Looks clean and ready to use. Let's try another prompt:

    output_parser=CleanupOutputParser(),
    verbose=True,
)

text = """
Think of a name for automaker that builds family cars with big V8 engines. Th
name must be a single word and easy to pronounce.
""".strip()
res = chain(text)

res.keys()

dict_keys(['input', 'history', 'response'])

print(res["response"])

SchruteAuto

Chain output



8/20/23, 7:15 AM Private Chatbot with Local LLM (Falcon 7B) and LangChain | MLExpert - Crush Your Machine Learning interview

https://www.mlexpert.io/prompt-engineering/chatbot-with-local-llm-using-langchain 11/13

Verbose output

Alright, how about a domain name?

Verbose output

The memory functionality of the chain is performing well, as it retains the conversation

context and remembers the specific details of the new automaker company. Let's try a

more complex prompt:

Verbose output

text = "Think of a slogan for the company"
res = chain(text)
print(res["response"])

Drive Big With SchruteAuto

text = "Choose a domain name for the company"
res = chain(text)
print(res["response"])

schruteauto.com

text = """
Write a tweet that introduces the company and introduces the first car built 
""".strip()
res = chain(text)
print(res["response"])

Chain output

Chain output



8/20/23, 7:15 AM Private Chatbot with Local LLM (Falcon 7B) and LangChain | MLExpert - Crush Your Machine Learning interview

https://www.mlexpert.io/prompt-engineering/chatbot-with-local-llm-using-langchain 12/13

I would definitely click on that link. Something only Dwight can do. For the final test,

let's ask the AI to write a short marketing email to sell the first car from the company:

Verbose output

Your new business is ready to go! You can use the same chain to generate more

content for your new company, or you can start a new chain and create a new company.

The possibilities are endless.

Conclusion

With LangChain's powerful features, we seamlessly integrated LLMs, implemented

stopping criteria, preserved chat history, and cleaned the output. The result? A

functional chatbot that delivers relevant and coherent responses. Armed with these

Introducing SchruteAuto! We build powerful family cars with big V8 engines.
Check out our website for more information: schruteauto.com

text = """
Write a short marketing email to sell the first car from the company - 700HP
family sedan from a supercharged V8 with manual gearbox.
""".strip()
res = chain(text)
print(res["response"])

Subject: Experience Power And Performance In Your Family Car
Body:
Are you looking for a powerful family car that can handle any road? Look no
further than SchruteAuto! Our 700HP family sedan comes equipped with a superc
engine and a manual gearbox, so you can experience power and performance in y
driveway. Visit schruteauto.com today to find out more!

Chain output

Chain output



8/20/23, 7:15 AM Private Chatbot with Local LLM (Falcon 7B) and LangChain | MLExpert - Crush Your Machine Learning interview

https://www.mlexpert.io/prompt-engineering/chatbot-with-local-llm-using-langchain 13/13

tools, you're equipped to develop your own intelligent chatbot, customized to meet

your specific requirements.

References

1. Falcon 7B Instruct↩

2. Stopping Criteria↩

3. Output parsers↩

© 2020-2023 MLExpert™ by Venelin Valkov. All Rights Reserved.

Join the The State of AI Newsletter
Every week, receive a curated collection of cutting-edge AI developments,

practical tutorials, and analysis, empowering you to stay ahead in the rapidly

evolving field of AI.

Your Email Address

SUBSCRIBE

I won't send you any spam, ever!

3,000+ people already joined

https://huggingface.co/tiiuae/falcon-7b-instruct
https://huggingface.co/docs/transformers/internal/generation_utils#transformers.StoppingCriteria
https://python.langchain.com/docs/modules/model_io/output_parsers/

