-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathParticle_filter_Localization.py
297 lines (229 loc) · 9.01 KB
/
Particle_filter_Localization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
# --------------
# USER INSTRUCTIONS
#
# Now will put everything together.
#
# First make sure that sense and move functions
# work as expected for the test cases provided at the
# bottom of the previous two programming assignments.
#
#
# A good way to include noise in the sense step is to
# add Gaussian noise, centered at zero with variance
# of self.bearing_noise to each bearing. can do this
# with the command random.gauss(0, self.bearing_noise)
#
# In the move step, should make sure that
# actual steering angle is chosen from a Gaussian
# distribution of steering angles. This distribution
# should be centered at the intended steering angle
# with variance of self.steering_noise.
#
from math import *
import random
max_steering_angle = pi / 4.0
bearing_noise = 0.1 # Noise parameter: should be included in sense function.
steering_noise = 0.1 # Noise parameter: should be included in move function.
distance_noise = 5.0 # Noise parameter: should be included in move function.
tolerance_xy = 15.0 # Tolerance for localization in the x and y directions.
tolerance_orientation = 0.25 # Tolerance for orientation.
# --------
#
# the "world" has 4 landmarks.
# the robot's initial coordinates are somewhere in the square
# represented by the landmarks.
#
# NOTE: Landmark coordinates are given in (y, x) form and NOT
# in the traditional (x, y) format!
landmarks = [[0.0, 100.0], [0.0, 0.0], [100.0, 0.0], [100.0, 100.0]] # position of 4 landmarks in (y, x) format.
world_size = 100.0 # world is NOT cyclic. Robot is allowed to travel "out of bounds"
# ------------------------------------------------
#
# this is the robot class
#
class robot:
# --------
# init:
# creates robot and initializes location/orientation
#
def __init__(self, length = 20.0):
self.x = random.random() * world_size # initial x position
self.y = random.random() * world_size # initial y position
self.orientation = random.random() * 2.0 * pi # initial orientation
self.length = length # length of robot
self.bearing_noise = 0.0 # initialize bearing noise to zero
self.steering_noise = 0.0 # initialize steering noise to zero
self.distance_noise = 0.0 # initialize distance noise to zero
# --------
# set:
# sets a robot coordinate
#
def set(self, new_x, new_y, new_orientation):
if new_orientation < 0 or new_orientation >= 2 * pi:
raise ValueError('Orientation must be in [0..2pi]')
self.x = float(new_x)
self.y = float(new_y)
self.orientation = float(new_orientation)
# --------
# set_noise:
# sets the noise parameters
#
def set_noise(self, new_b_noise, new_s_noise, new_d_noise):
# makes it possible to change the noise parameters
# this is often useful in particle filters
self.bearing_noise = float(new_b_noise)
self.steering_noise = float(new_s_noise)
self.distance_noise = float(new_d_noise)
# --------
# measurement_prob
# computes the probability of a measurement
#
def measurement_prob(self, measurements):
# calculate the correct measurement
predicted_measurements = self.sense(0) # Our sense function took 0 as an argument to switch off noise.
# compute errors
error = 1.0
for i in range(len(measurements)):
error_bearing = abs(measurements[i] - predicted_measurements[i])
error_bearing = (error_bearing + pi) % (2.0 * pi) - pi # truncate
print(self.bearing_noise)
# update Gaussian
# error *= (exp(- (error_bearing ** 2) / (self.bearing_noise ** 2) / 2.0) /
# sqrt(2.0 * pi * (self.bearing_noise ** 2)))
return error
def __repr__(self): #allows us to print robot attributes.
return '[x=%.6s y=%.6s orient=%.6s]' % (str(self.x), str(self.y),
str(self.orientation))
def move(self, motion):
alpha=motion[0]
d=motion[1]
res=robot()
res.length=self.length
res.steering_noise=self.steering_noise
res.distance_noise=self.distance_noise
alpha=random.gauss(alpha,steering_noise)
d=random.gauss(d,distance_noise)
beta=d*tan(alpha)/res.length
tol=0.001
if beta< 0.001:
res.x=self.x+d*cos(self.orientation)
res.y=self.y-d*sin(self.orientation)
res.orientation=(self.orientation + beta)%(2*pi)
else:
R=d/beta
cx=self.x-R*sin(self.orientation)
cy=self.y+R*cos(self.orientation)
res.x=cx+ sin(self.orientation+beta)*R
res.y=cy-cos(self.orientation+beta)*R
res.orientation= (self.orientation+beta)%(2*pi)
return res
# --------
def sense(self,noise=1):
Z = []
for i in range(len(landmarks)):
del_y=landmarks[i][0]-self.y
del_x=landmarks[i][1]-self.x
bearing=atan2(del_y,del_x)-self.orientation
bearing%=2*pi
if(noise==1):
bearing=random.gauss(bearing,self.bearing_noise)
Z.append(bearing)
# ENTER CODE HERE
# HINT: You will probably need to use the function atan2()
return Z
# --------
#
# extract position from a particle set
#
def get_position(p):
x = 0.0
y = 0.0
orientation = 0.0
for i in range(len(p)):
x += p[i].x
y += p[i].y
# orientation is tricky because it is cyclic. By normalizing
# around the first particle we are somewhat more robust to
# the 0=2pi problem
orientation += (((p[i].orientation - p[0].orientation + pi) % (2.0 * pi))
+ p[0].orientation - pi)
return [x / len(p), y / len(p), orientation / len(p)]
# --------
#
# The following code generates the measurements vector
# You can use it to develop your solution.
#
def generate_ground_truth(motions):
myrobot = robot()
myrobot.set_noise(bearing_noise, steering_noise, distance_noise)
Z = []
T = len(motions)
for t in range(T):
myrobot = myrobot.move(motions[t])
Z.append(myrobot.sense())
#print 'Robot: ', myrobot
return [myrobot, Z]
def print_measurements(Z):
T = len(Z)
print('measurements = [[%.8s, %.8s, %.8s, %.8s],' % \
(str(Z[0][0]), str(Z[0][1]), str(Z[0][2]), str(Z[0][3])))
for t in range(1,T-1):
print( ' [%.8s, %.8s, %.8s, %.8s],' % \
(str(Z[t][0]), str(Z[t][1]), str(Z[t][2]), str(Z[t][3])))
print(' [%.8s, %.8s, %.8s, %.8s]]' % \
(str(Z[T-1][0]), str(Z[T-1][1]), str(Z[T-1][2]), str(Z[T-1][3])))
def check_output(final_robot, estimated_position):
error_x = abs(final_robot.x - estimated_position[0])
error_y = abs(final_robot.y - estimated_position[1])
error_orientation = abs(final_robot.orientation - estimated_position[2])
error_orientation = (error_orientation + pi) % (2.0 * pi) - pi
correct = error_x < tolerance_xy and error_y < tolerance_xy \
and error_orientation < tolerance_orientation
return correct
def particle_filter(motions, measurements, N=500):
# --------
#
# Make particles
#
p = []
for i in range(N):
r = robot()
r.set_noise(bearing_noise, steering_noise, distance_noise)
p.append(r)
# --------
#
# Update particles
#
for t in range(len(motions)):
# motion update (prediction)
p2 = []
for i in range(N):
p2.append(p[i].move(motions[t]))
p = p2
# measurement update
w = []
for i in range(N):
w.append(p[i].measurement_prob(measurements[t]))
# resampling
p3 = []
index = int(random.random() * N)
beta = 0.0
mw = max(w)
for i in range(N):
beta += random.random() * 2.0 * mw
while beta > w[index]:
beta -= w[index]
index = (index + 1) % N
p3.append(p[index])
p = p3
return get_position(p)
motions = [[2. * pi / 10, 20.] for row in range(8)]
measurements = [[4.746936, 3.859782, 3.045217, 2.045506],
[3.510067, 2.916300, 2.146394, 1.598332],
[2.972469, 2.407489, 1.588474, 1.611094],
[1.906178, 1.193329, 0.619356, 0.807930],
[1.352825, 0.662233, 0.144927, 0.799090],
[0.856150, 0.214590, 5.651497, 1.062401],
[0.194460, 5.660382, 4.761072, 2.471682],
[5.717342, 4.736780, 3.909599, 2.342536]]
print(particle_filter(motions, measurements))