forked from stealthwhizz/Hand-Sign-Detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
function.py
42 lines (34 loc) · 1.46 KB
/
function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#import dependency
import cv2
import numpy as np
import os
import mediapipe as mp
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_hands = mp.solutions.hands
def mediapipe_detection(image, model):
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # COLOR CONVERSION BGR 2 RGB
image.flags.writeable = False # Image is no longer writeable
results = model.process(image) # Make prediction
image.flags.writeable = True # Image is now writeable
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # COLOR COVERSION RGB 2 BGR
return image, results
def draw_styled_landmarks(image, results):
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
mp_drawing.draw_landmarks(
image,
hand_landmarks,
mp_hands.HAND_CONNECTIONS,
mp_drawing_styles.get_default_hand_landmarks_style(),
mp_drawing_styles.get_default_hand_connections_style())
def extract_keypoints(results):
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
rh = np.array([[res.x, res.y, res.z] for res in hand_landmarks.landmark]).flatten() if hand_landmarks else np.zeros(21*3)
return(np.concatenate([rh]))
# Path for exported data, numpy arrays
DATA_PATH = os.path.join('MP_Data')
actions = np.array(['A','B','C'])
no_sequences = 30
sequence_length = 30