-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlinkable_ring_signature.py
executable file
·410 lines (297 loc) · 12 KB
/
linkable_ring_signature.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
#! /usr/bin/env python
#
# Provide an implementation of Linkable Spontaneus Anonymous Group Signature
# over elliptic curve cryptography.
#
# Implementation of cryptographic scheme from: https://eprint.iacr.org/2004/027.pdf
#
#
# Written in 2017 by Fernanddo Lobato Meeser and placed in the public domain.
import os
import hashlib
import functools
import ecdsa
import sys
from ecdsa.util import randrange
from ecdsa.ecdsa import curve_secp256k1
from ecdsa.curves import SECP256k1
from ecdsa import numbertheory
from eth_abi.packed import encode_single_packed, encode_abi_packed
def ring_signature(siging_key, key_idx, M, y, G=SECP256k1.generator, hash_func=hashlib.sha256):
"""
Generates a ring signature for a message given a specific set of
public keys and a signing key belonging to one of the public keys
in the set.
PARAMS
------
signing_key: (int) The with which the message is to be anonymously signed.
key_idx: (int) The index of the public key corresponding to the signature
private key over the list of public keys that compromise the signature.
M: (str) Message to be signed.
y: (list) The list of public keys which over which the anonymous signature
will be compose.
G: (ecdsa.ellipticcurve.Point) Base point for the elliptic curve.
hash_func: (function) Cryptographic hash function that recieves an input
and outputs a digest.
RETURNS
-------
Signature (c_0, s, Y) :
c_0: Initial value to reconstruct signature.
s = vector of randomly generated values with encrypted secret to
reconstruct signature.
Y = Link for current signer.
"""
n = len(y)
c = [0] * n
s = [0] * n
# STEP 1
H = H2(y, hash_func=hash_func)
Y = H * siging_key
# STEP 2
u = randrange(SECP256k1.order)
c[(key_idx + 1) % n] = H1([y, Y, M, G * u, H * u], hash_func=hash_func)
# STEP 3
for i in [ i for i in range(key_idx + 1, n) ] + [i for i in range(key_idx)]:
s[i] = randrange(SECP256k1.order)
z_1 = (G * s[i]) + (y[i] * c[i])
z_2 = (H * s[i]) + (Y * c[i])
c[(i + 1) % n] = H1([y, Y, M, z_1, z_2], hash_func=hash_func)
# STEP 4
s[key_idx] = (u - siging_key * c[key_idx]) % SECP256k1.order
return (c[0], s, Y)
def verify_ring_signature(message, y, c_0, s, Y, G=SECP256k1.generator, hash_func=hashlib.sha256):
"""
Verifies if a valid signature was made by a key inside a set of keys.
PARAMS
------
message: (str) message whos' signature is being verified.
y: (list) set of public keys with which the message was signed.
Signature:
c_0: (int) initial value to reconstruct the ring.
s: (list) vector of secrets used to create ring.
Y = (int) Link of unique signer.
G: (ecdsa.ellipticcurve.Point) Base point for the elliptic curve.
hash_func: (function) Cryptographic hash function that recieves an input
and outputs a digest.
RETURNS
-------
Boolean value indicating if signature is valid.
"""
n = len(y)
c = [c_0] + [0] * (n - 1)
H = H2(y, hash_func=hash_func)
# print ("H=",H)
for i in range(n):
z_1 = (G * s[i]) + (y[i] * c[i])
z_2 = (H * s[i]) + (Y * c[i])
# print ("z_1=",z_1)
# print ("z_2=",z_2)
if i < n - 1:
c[i + 1] = H1([y, Y, message, z_1, z_2], hash_func=hash_func)
# print ("c=",c[i+1])
else:
return c_0 == H1([y, Y, message, z_1, z_2], hash_func=hash_func)
return False
def map_to_curve(x, P=curve_secp256k1.p()):
"""
Maps an integer to an elliptic curve.
Using the try and increment algorithm, not quite
as efficient as I would like, but c'est la vie.
PARAMS
------
x: (int) number to be mapped into E.
P: (ecdsa.curves.curve_secp256k1.p) Modulo for elliptic curve.
RETURNS
-------
(ecdsa.ellipticcurve.Point) Point in Curve
"""
x -= 1
y = 0
found = False
while not found:
x += 1
f_x = (x * x * x + 7) % P
try:
y = numbertheory.square_root_mod_prime(f_x, P)
found = True
except Exception as e:
pass
return ecdsa.ellipticcurve.Point(curve_secp256k1, x, y)
def H1(msg, hash_func=hashlib.sha256):
"""
Return an integer representation of the hash of a message. The
message can be a list of messages that are concatenated with the
concat() function.
PARAMS
------
msg: (str or list) message(s) to be hashed.
hash_func: (function) a hash function which can recieve an input
string and return a hexadecimal digest.
RETURNS
-------
Integer representation of hexadecimal digest from hash function.
"""
# print ("H1=",int('0x'+ hash_func(concat(msg)).hexdigest(), 16))
return int('0x'+ hash_func(concat(msg)).hexdigest(), 16)
def H2(msg, hash_func=hashlib.sha256):
"""
Hashes a message into an elliptic curve point.
PARAMS
------
msg: (str or list) message(s) to be hashed.
hash_func: (function) Cryptographic hash function that recieves an input
and outputs a digest.
RETURNS
-------
ecdsa.ellipticcurve.Point to curve.
"""
return map_to_curve(H1(msg, hash_func=hash_func))
def H1_improv(y, Y, message, z_1, z_2, hash_func=hashlib.sha3_256):
return int('0x'+ hash_func(concat2(y, Y, message, z_1, z_2)).hexdigest(), 16)
def concat2(y, Y, message, z_1, z_2):
return encode_abi_packed(['int256[2][]', 'uint256[2]', 'bytes32', 'uint256[2]', 'uint256[2]'], (y, Y, message, z_1, z_2))
def concat(params):
"""
Concatenates a list of parameters into a bytes. If one
of the parameters is a list, calls itself recursively.
PARAMS
------
params: (list) list of elements, must be of type:
- int
- list
- str
- ecdsa.ellipticcurve.Point
RETURNS
-------
concatenated bytes of all values.
"""
n = len(params)
bytes_value = [0] * n
for i in range(n):
if type(params[i]) is int:
bytes_value[i] = params[i].to_bytes(32, 'big')
# print (bytes_value[i])
if type(params[i]) is list:
bytes_value[i] = concat(params[i])
# print (bytes_value[i])
if type(params[i]) is ecdsa.ellipticcurve.Point:
bytes_value[i] = params[i].x().to_bytes(32, 'big') + params[i].y().to_bytes(32, 'big')
if type(params[i]) is str:
bytes_value[i] = params[i].encode()
# print (bytes_value[i])
if bytes_value[i] == 0:
bytes_value[i] = params[i].x().to_bytes(32, 'big') + params[i].y().to_bytes(32, 'big')
# print (bytes_value)
return functools.reduce(lambda x, y: x + y, bytes_value)
def stringify_point(p):
"""
Represents an elliptic curve point as a string coordinate.
PARAMS
------
p: ecdsa.ellipticcurve.Point - Point to represent as string.
RETURNS
-------
(str) Representation of a point (x, y)
"""
return '{},{}'.format(p.x(), p.y())
def stringify_point_js(p):
"""
Represents an elliptic curve point as a string coordinate, the
string format is javascript so other javascript scripts can
consume this.
PARAMS
------
p: ecdsa.ellipticcurve.Point - Point to represent as string.
RETURNS
-------
(str) Javascript string representation of a point (x, y)
"""
return 'new BigNumber("{}"), new BigNumber("{}")'.format(p.x(), p.y())
def export_signature(y, message, signature, foler_name='./data', file_name='signature.txt'):
""" Exports a signature to a specific folder and filename provided.
The file contains the signature, the ring used to generate signature
and the message being signed.
"""
if not os.path.exists(foler_name):
os.makedirs(foler_name)
for k in range(0,len(signature[1])):
signature[1][k] = hex(int(signature[1][k]))
keyimage = [0, 0]
keyimage[0] = hex(signature[2].x())
keyimage[1] = hex(signature[2].y())
arch = open(os.path.join(foler_name, file_name), 'w')
S = ''.join(map(lambda x: str(x) + ',', signature[1]))[:-1]
# Y = stringify_point(signature[2])
Y = keyimage
dump = '{}\n'.format("Here is your signature:")
dump += '{}'.format("c0 = ")
dump += '{}\n'.format(hex(signature[0]))
dump += '{}'.format("S array = ")
dump += '{}\n'.format(S)
dump += '{}'.format("KeyImage = ")
dump += '{}\n'.format(Y)
arch.write(dump)
data = '\n'
data += "You will be voting for proposal {}\n".format(message)
data += '\n'
pub_keys = ''.join(map(lambda yi: stringify_point(yi) + ';', y))[:-1]
# data = '{}\n'.format(''.join([ '{},'.format(m) for m in str(message)])[:-1])
data += '{}'.format("Public Keys given = ")
data += '{}\n,'.format(pub_keys)[:-1]
arch.write(data)
arch.close()
def export_private_keys(s_keys, foler_name='./data', file_name='secrets.txt'):
""" Exports a set of private keys to a file.
Each line in the file is one key.
"""
if not os.path.exists(foler_name):
os.makedirs(foler_name)
arch = open(os.path.join(foler_name, file_name), 'w')
for key in s_keys:
arch.write('{}\n'.format(key))
arch.close()
def export_signature_javascript(y, message, signature, foler_name='./data', file_name='signature.js'):
""" Exports a signatrue in javascript format to a file and folder.
"""
if not os.path.exists(foler_name):
os.makedirs(foler_name)
arch = open(os.path.join(foler_name, file_name), 'w')
S = ''.join(map(lambda x: 'new BigNumber("' + str(x) + '"),', signature[1]))[:-1]
Y = stringify_point_js(signature[2])
dump = 'var c_0 = new BigNumber("{}");\n'.format(signature[0])
dump += 'var s = [{}];\n'.format(S)
dump += 'var Y = [{}];\n'.format(Y)
arch.write(dump)
pub_keys = ''.join(map(lambda yi: stringify_point_js(yi) + ',', y))[:-1]
data = 'var message = [{}];\n'.format(''.join([ 'new BigNumber("{}"),'.format(m) for m in message])[:-1])
data += 'var pub_keys = [{}];'.format(pub_keys)
arch.write(data + '\n')
arch.close()
def main():
number_participants = 5
x = [56121026420206427922036047295033295468704194889942276402384109623365910341114,97148831986497178251981347099741561152929354799719003736306468101246934956731,73582564991556101489090114036789577051420144847960038776033502314051350434733,58959788109781048630827926226104720045842317320518204126269224311951440226761,41745480486210574223547556272772914684478811935146531809992005566760468807878]
# x = [ randrange(SECP256k1.order) for i in range(number_participants)]
y = list(map(lambda xi: SECP256k1.generator * xi, x))
private_key = input("Please enter your private key : ")
private_key = int(private_key)
i = 0
j = 0
for k in range(0,number_participants):
if private_key == x[k]:
i = k
break
j += 1
if j == number_participants:
print ("Sorry, wrong private key. Try again")
return 0
message = input("Whom do you want to cast your vote among the 3 proposals? ")
message = int(message)
if message >= 3:
print ("Sorry, the proposal doesn't exist")
return 0
signature = ring_signature(x[i], i, message, y)
assert(verify_ring_signature(message, y, *signature))
export_signature(y, message, signature, './data', 'signature.txt')
print ("Signature created! Please check data/signature.txt")
if __name__ == '__main__':
main()