-
Notifications
You must be signed in to change notification settings - Fork 6
/
data.py
350 lines (283 loc) · 13 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import os.path as osp
import torch
from torch.utils.data import Dataset
import transformers
import string
import nltk
from tqdm import tqdm
from nltk.corpus import stopwords
import logging
UNK = '[UNK]'
nltk.download('stopwords')
nltk.download('punkt')
STOP_WORDS = stopwords.words('english')
DROPPED = STOP_WORDS + list(string.punctuation)
CATEGORY_IDS = {'1-to-1': 0, '1-to-many': 1, 'many-to-1': 2, 'many-to-many': 3}
def file_to_ids(file_path):
"""Read one line per file and assign it an ID.
Args:
file_path: str, path of file to read
Returns: dict, mapping str to ID (int)
"""
str2id = dict()
with open(file_path) as file:
for i, line in enumerate(file):
str2id[line.strip()] = i
return str2id
def get_negative_sampling_indices(batch_size, num_negatives, repeats=1):
""""Obtain indices for negative sampling within a batch of entity pairs.
Indices are sampled from a reshaped array of indices. For example,
if there are 4 pairs (batch_size=4), the array of indices is
[[0, 1],
[2, 3],
[4, 5],
[6, 7]]
From this array, we corrupt either the first or second element of each row.
This yields one negative sample.
For example, if the positions with a dash are selected,
[[0, -],
[-, 3],
[4, -],
[-, 7]]
they are then replaced with a random index from a row other than the row
to which they belong:
[[0, 3],
[5, 3],
[4, 6],
[1, 7]]
The returned array has shape (batch_size, num_negatives, 2).
"""
num_ents = batch_size * 2
idx = torch.arange(num_ents).reshape(batch_size, 2)
# For each row, sample entities, assigning 0 probability to entities
# of the same row
zeros = torch.zeros(batch_size, 2)
head_weights = torch.ones(batch_size, num_ents, dtype=torch.float)
head_weights.scatter_(1, idx, zeros)
random_idx = head_weights.multinomial(num_negatives * repeats,
replacement=True)
random_idx = random_idx.t().flatten()
# Select randomly the first or the second column
row_selector = torch.arange(batch_size * num_negatives * repeats)
col_selector = torch.randint(0, 2, [batch_size * num_negatives * repeats])
# Fill the array of negative samples with the sampled random entities
# at the right positions
neg_idx = idx.repeat((num_negatives * repeats, 1))
neg_idx[row_selector, col_selector] = random_idx
neg_idx = neg_idx.reshape(-1, batch_size * repeats, 2)
neg_idx.transpose_(0, 1)
return neg_idx
class GraphDataset(Dataset):
"""A Dataset storing the triples of a Knowledge Graph.
Args:
triples_file: str, path to the file containing triples. This is a
text file where each line contains a triple of the form
'subject predicate object'
write_maps_file: bool, if set to True, dictionaries mapping
entities and relations to IDs are saved to disk (for reuse with
other datasets).
"""
def __init__(self, triples_file, neg_samples=None, write_maps_file=False,
num_devices=1):
directory = osp.dirname(triples_file)
maps_path = osp.join(directory, 'maps.pt')
# Create or load maps from entity and relation strings to unique IDs
if not write_maps_file:
if not osp.exists(maps_path):
raise ValueError('Maps file not found.')
maps = torch.load(maps_path)
ent_ids, rel_ids = maps['ent_ids'], maps['rel_ids']
else:
ents_file = osp.join(directory, 'entities.txt')
rels_file = osp.join(directory, 'relations.txt')
ent_ids = file_to_ids(ents_file)
rel_ids = file_to_ids(rels_file)
entities = set()
relations = set()
# Read triples and store as ints in tensor
file = open(triples_file)
triples = []
for i, line in enumerate(file):
values = line.split()
# FB13 and WN11 have duplicate triples for classification,
# here we keep the correct triple
if len(values) > 3 and values[3] == '-1':
continue
head, rel, tail = line.split()[:3]
entities.update([head, tail])
relations.add(rel)
triples.append([ent_ids[head], ent_ids[tail], rel_ids[rel]])
self.triples = torch.tensor(triples, dtype=torch.long)
self.rel_categories = torch.zeros(len(rel_ids), dtype=torch.long)
rel_categories_file = osp.join(directory, 'relations-cat.txt')
self.has_rel_categories = False
if osp.exists(rel_categories_file):
with open(rel_categories_file) as f:
for line in f:
rel, cat = line.strip().split()
self.rel_categories[rel_ids[rel]] = CATEGORY_IDS[cat]
self.has_rel_categories = True
# Save maps for reuse
torch.save({'ent_ids': ent_ids, 'rel_ids': rel_ids}, maps_path)
self.num_ents = len(entities)
self.num_rels = len(relations)
self.entities = torch.tensor([ent_ids[ent] for ent in entities])
self.num_triples = self.triples.shape[0]
self.directory = directory
self.maps_path = maps_path
self.neg_samples = neg_samples
self.num_devices = num_devices
def __getitem__(self, index):
return self.triples[index]
def __len__(self):
return self.num_triples
def collate_fn(self, data_list):
"""Given a batch of triples, return it together with a batch of
corrupted triples where either the subject or object are replaced
by a random entity. Use as a collate_fn for a DataLoader.
"""
batch_size = len(data_list)
pos_pairs, rels = torch.stack(data_list).split(2, dim=1)
neg_idx = get_negative_sampling_indices(batch_size, self.neg_samples)
return pos_pairs, rels, neg_idx
class TextGraphDataset(GraphDataset):
"""A dataset storing a graph, and textual descriptions of its entities.
Args:
triples_file: str, path to the file containing triples. This is a
text file where each line contains a triple of the form
'subject predicate object'
max_len: int, maximum number of tokens to read per description.
neg_samples: int, number of negative samples to get per triple
tokenizer: transformers.PreTrainedTokenizer or GloVeTokenizer, used
to tokenize the text.
drop_stopwords: bool, if set to True, punctuation and stopwords are
dropped from entity descriptions.
write_maps_file: bool, if set to True, dictionaries mapping
entities and relations to IDs are saved to disk (for reuse with
other datasets).
drop_stopwords: bool
"""
def __init__(self, triples_file, neg_samples, max_len, tokenizer,
drop_stopwords, write_maps_file=False, use_cached_text=False,
num_devices=1):
super().__init__(triples_file, neg_samples, write_maps_file,
num_devices)
maps = torch.load(self.maps_path)
ent_ids = maps['ent_ids']
if max_len is None:
max_len = tokenizer.max_len
cached_text_path = osp.join(self.directory, 'text_data.pt')
need_to_load_text = True
if use_cached_text:
logger = logging.getLogger()
if osp.exists(cached_text_path):
self.text_data = torch.load(cached_text_path)
logger.info(f'Loaded cached text data for'
f' {self.text_data.shape[0]} entities,'
f' and maximum length {self.text_data.shape[1]}.')
need_to_load_text = False
else:
logger.info(f'Cached text data not found.')
if need_to_load_text:
self.text_data = torch.zeros((len(ent_ids), max_len + 1),
dtype=torch.long)
read_entities = set()
progress = tqdm(desc='Reading entity descriptions',
total=len(ent_ids), mininterval=5)
for text_file in ('entity2textlong.txt', 'entity2text.txt'):
file_path = osp.join(self.directory, text_file)
if not osp.exists(file_path):
continue
with open(file_path) as f:
for line in f:
values = line.strip().split('\t')
entity = values[0]
text = ' '.join(values[1:])
if entity not in ent_ids:
continue
if entity in read_entities:
continue
read_entities.add(entity)
ent_id = ent_ids[entity]
if drop_stopwords:
tokens = nltk.word_tokenize(text)
text = ' '.join([t for t in tokens if
t.lower() not in DROPPED])
text_tokens = tokenizer.encode(text,
max_length=max_len,
return_tensors='pt')
text_len = text_tokens.shape[1]
# Starting slice of row contains token IDs
self.text_data[ent_id, :text_len] = text_tokens
# Last cell contains sequence length
self.text_data[ent_id, -1] = text_len
progress.update()
progress.close()
if len(read_entities) != len(ent_ids):
raise ValueError(f'Read {len(read_entities):,} descriptions,'
f' but {len(ent_ids):,} were expected.')
if self.text_data[:, -1].min().item() < 1:
raise ValueError(f'Some entries in text_data contain'
f' length-0 descriptions.')
torch.save(self.text_data,
osp.join(self.directory, 'text_data.pt'))
def get_entity_description(self, ent_ids):
"""Get entity descriptions for a tensor of entity IDs."""
text_data = self.text_data[ent_ids]
text_end_idx = text_data.shape[-1] - 1
# Separate tokens from lengths
text_tok, text_len = text_data.split(text_end_idx, dim=-1)
max_batch_len = text_len.max()
# Truncate batch
text_tok = text_tok[..., :max_batch_len]
text_mask = (text_tok > 0).float()
return text_tok, text_mask, text_len
def collate_fn(self, data_list):
"""Given a batch of triples, return it in the form of
entity descriptions, and the relation types between them.
Use as a collate_fn for a DataLoader.
"""
batch_size = len(data_list) // self.num_devices
if batch_size <= 1:
raise ValueError('collate_text can only work with batch sizes'
' larger than 1.')
pos_pairs, rels = torch.stack(data_list).split(2, dim=1)
text_tok, text_mask, text_len = self.get_entity_description(pos_pairs)
neg_idx = get_negative_sampling_indices(batch_size, self.neg_samples,
repeats=self.num_devices)
return text_tok, text_mask, rels, neg_idx
class GloVeTokenizer:
def __init__(self, vocab_dict_file, uncased=True):
self.word2idx = torch.load(vocab_dict_file)
self.uncased = uncased
def encode(self, text, max_length, return_tensors):
if self.uncased:
text = text.lower()
tokens = nltk.word_tokenize(text)
encoded = [self.word2idx.get(t, self.word2idx[UNK]) for t in tokens]
encoded = [encoded[:max_length]]
if return_tensors:
encoded = torch.tensor(encoded)
return encoded
def batch_encode_plus(self, batch, max_length, **kwargs):
batch_tokens = []
for text in batch:
tokens = self.encode(text, max_length, return_tensors=False)[0]
if len(tokens) < max_length:
tokens += [0] * (max_length - len(tokens))
batch_tokens.append(tokens)
batch_tokens = torch.tensor(batch_tokens, dtype=torch.long)
batch_masks = (batch_tokens > 0).float()
tokenized_data = {'input_ids': batch_tokens,
'attention_mask': batch_masks}
return tokenized_data
def test_text_graph_dataset():
from torch.utils.data import DataLoader
tok = transformers.AlbertTokenizer.from_pretrained('albert-base-v2')
gtr = TextGraphDataset('data/wikifb15k237/train-triples.txt', max_len=32,
neg_samples=32, tokenizer=tok, drop_stopwords=False)
loader = DataLoader(gtr, batch_size=8, collate_fn=gtr.collate_fn)
data = next(iter(loader))
print('Done')
if __name__ == '__main__':
test_text_graph_dataset()