Skip to content

Commit

Permalink
[pre-commit.ci] pre-commit autoupdate (#416)
Browse files Browse the repository at this point in the history
* [pre-commit.ci] pre-commit autoupdate

updates:
- [github.com/psf/black: 21.12b0 → 22.1.0](psf/black@21.12b0...22.1.0)
- [github.com/dfm/black_nbconvert: v0.3.0 → v0.4.0](dfm/black_nbconvert@v0.3.0...v0.4.0)

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update pyproject.toml

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Dan Foreman-Mackey <foreman.mackey@gmail.com>
  • Loading branch information
pre-commit-ci[bot] and dfm authored Feb 16, 2022
1 parent 262db3d commit 47c7b17
Show file tree
Hide file tree
Showing 14 changed files with 23 additions and 24 deletions.
4 changes: 2 additions & 2 deletions .pre-commit-config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -16,11 +16,11 @@ repos:
exclude: docs/tutorials

- repo: https://github.com/psf/black
rev: "21.12b0"
rev: "22.1.0"
hooks:
- id: black

- repo: https://github.com/dfm/black_nbconvert
rev: v0.3.0
rev: v0.4.0
hooks:
- id: black_nbconvert
2 changes: 1 addition & 1 deletion docs/tutorials/autocorr.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -450,7 +450,7 @@
"\n",
"\n",
"def log_prob(p):\n",
" return np.logaddexp(-0.5 * np.sum(p ** 2), -0.5 * np.sum((p - 4.0) ** 2))\n",
" return np.logaddexp(-0.5 * np.sum(p**2), -0.5 * np.sum((p - 4.0) ** 2))\n",
"\n",
"\n",
"sampler = emcee.EnsembleSampler(32, 3, log_prob)\n",
Expand Down
6 changes: 3 additions & 3 deletions docs/tutorials/line.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -148,9 +148,9 @@
"source": [
"A = np.vander(x, 2)\n",
"C = np.diag(yerr * yerr)\n",
"ATA = np.dot(A.T, A / (yerr ** 2)[:, None])\n",
"ATA = np.dot(A.T, A / (yerr**2)[:, None])\n",
"cov = np.linalg.inv(ATA)\n",
"w = np.linalg.solve(ATA, np.dot(A.T, y / yerr ** 2))\n",
"w = np.linalg.solve(ATA, np.dot(A.T, y / yerr**2))\n",
"print(\"Least-squares estimates:\")\n",
"print(\"m = {0:.3f} ± {1:.3f}\".format(w[0], np.sqrt(cov[0, 0])))\n",
"print(\"b = {0:.3f} ± {1:.3f}\".format(w[1], np.sqrt(cov[1, 1])))\n",
Expand Down Expand Up @@ -218,7 +218,7 @@
"def log_likelihood(theta, x, y, yerr):\n",
" m, b, log_f = theta\n",
" model = m * x + b\n",
" sigma2 = yerr ** 2 + model ** 2 * np.exp(2 * log_f)\n",
" sigma2 = yerr**2 + model**2 * np.exp(2 * log_f)\n",
" return -0.5 * np.sum((y - model) ** 2 / sigma2 + np.log(sigma2))"
]
},
Expand Down
4 changes: 2 additions & 2 deletions docs/tutorials/monitor.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -58,7 +58,7 @@
"# We'll also use the \"blobs\" feature to track the \"log prior\" for each step\n",
"def log_prob(theta):\n",
" log_prior = -0.5 * np.sum((theta - 1.0) ** 2 / 100.0)\n",
" log_prob = -0.5 * np.sum(theta ** 2) + log_prior\n",
" log_prob = -0.5 * np.sum(theta**2) + log_prior\n",
" return log_prob, log_prior\n",
"\n",
"\n",
Expand Down Expand Up @@ -341,7 +341,7 @@
"# this time, with a subtly different prior\n",
"def log_prob2(theta):\n",
" log_prior = -0.5 * np.sum((theta - 2.0) ** 2 / 100.0)\n",
" log_prob = -0.5 * np.sum(theta ** 2) + log_prior\n",
" log_prob = -0.5 * np.sum(theta**2) + log_prior\n",
" return log_prob, log_prior\n",
"\n",
"\n",
Expand Down
6 changes: 3 additions & 3 deletions docs/tutorials/parallel.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -85,7 +85,7 @@
" while True:\n",
" if time.time() >= t:\n",
" break\n",
" return -0.5 * np.sum(theta ** 2)"
" return -0.5 * np.sum(theta**2)"
]
},
{
Expand Down Expand Up @@ -348,7 +348,7 @@
" while True:\n",
" if time.time() >= t:\n",
" break\n",
" return -0.5 * np.sum(theta ** 2)\n",
" return -0.5 * np.sum(theta**2)\n",
"\n",
"\n",
"data = np.random.randn(5000, 200)\n",
Expand Down Expand Up @@ -459,7 +459,7 @@
" while True:\n",
" if time.time() >= t:\n",
" break\n",
" return -0.5 * np.sum(theta ** 2)\n",
" return -0.5 * np.sum(theta**2)\n",
"\n",
"\n",
"with Pool() as pool:\n",
Expand Down
2 changes: 1 addition & 1 deletion docs/tutorials/quickstart.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -101,7 +101,7 @@
"np.random.seed(42)\n",
"means = np.random.rand(ndim)\n",
"\n",
"cov = 0.5 - np.random.rand(ndim ** 2).reshape((ndim, ndim))\n",
"cov = 0.5 - np.random.rand(ndim**2).reshape((ndim, ndim))\n",
"cov = np.triu(cov)\n",
"cov += cov.T - np.diag(cov.diagonal())\n",
"cov = np.dot(cov, cov)"
Expand Down
1 change: 0 additions & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,6 @@ build-backend = "setuptools.build_meta"

[tool.black]
line-length = 79
target-version = ['py35']
exclude = '''
/(
\.eggs
Expand Down
6 changes: 3 additions & 3 deletions src/emcee/ensemble.py
Original file line number Diff line number Diff line change
Expand Up @@ -642,7 +642,7 @@ def walkers_independent(coords):
if np.any(C_colmax == 0):
return False
C /= C_colmax
C_colsum = np.sqrt(np.sum(C ** 2, axis=0))
C_colsum = np.sqrt(np.sum(C**2, axis=0))
C /= C_colsum
return np.linalg.cond(C.astype(float)) <= 1e8

Expand All @@ -655,11 +655,11 @@ def walkers_independent_cov(coords):


def _scaled_cond(a):
asum = np.sqrt((a ** 2).sum(axis=0))[None, :]
asum = np.sqrt((a**2).sum(axis=0))[None, :]
if np.any(asum == 0):
return np.inf
b = a / asum
bsum = np.sqrt((b ** 2).sum(axis=1))[:, None]
bsum = np.sqrt((b**2).sum(axis=1))[:, None]
if np.any(bsum == 0):
return np.inf
c = b / bsum
Expand Down
2 changes: 1 addition & 1 deletion src/emcee/tests/integration/test_longdouble.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@

def test_longdouble_doesnt_crash_bug_312():
def log_prob(x, ivar):
return -0.5 * np.sum(ivar * x ** 2)
return -0.5 * np.sum(ivar * x**2)

ndim, nwalkers = 5, 20
ivar = 1.0 / np.random.rand(ndim).astype(np.longdouble)
Expand Down
4 changes: 2 additions & 2 deletions src/emcee/tests/integration/test_proposal.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,11 +15,11 @@


def normal_log_prob_blobs(params):
return -0.5 * np.sum(params ** 2), params
return -0.5 * np.sum(params**2), params


def normal_log_prob(params):
return -0.5 * np.sum(params ** 2)
return -0.5 * np.sum(params**2)


def uniform_log_prob(params):
Expand Down
2 changes: 1 addition & 1 deletion src/emcee/tests/unit/test_backends.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@


def normal_log_prob(params):
return -0.5 * np.sum(params ** 2)
return -0.5 * np.sum(params**2)


def normal_log_prob_blobs(params):
Expand Down
2 changes: 1 addition & 1 deletion src/emcee/tests/unit/test_blobs.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@ def __init__(self, blob_function):
self.blob_function = blob_function

def __call__(self, params):
return -0.5 * np.sum(params ** 2), self.blob_function(params)
return -0.5 * np.sum(params**2), self.blob_function(params)


@pytest.mark.parametrize("backend", backends.get_test_backends())
Expand Down
4 changes: 2 additions & 2 deletions src/emcee/tests/unit/test_sampler.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@


def normal_log_prob(params):
return -0.5 * np.sum(params ** 2)
return -0.5 * np.sum(params**2)


@pytest.mark.parametrize(
Expand Down Expand Up @@ -211,7 +211,7 @@ def test_restart(backend):

def test_vectorize():
def lp_vec(p):
return -0.5 * np.sum(p ** 2, axis=1)
return -0.5 * np.sum(p**2, axis=1)

np.random.seed(42)
nwalkers, ndim = 32, 3
Expand Down
2 changes: 1 addition & 1 deletion src/emcee/tests/unit/test_state.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@ def test_overwrite(seed=1234):
np.random.seed(seed)

def ll(x):
return -0.5 * np.sum(x ** 2)
return -0.5 * np.sum(x**2)

nwalkers = 64
p0 = np.random.normal(size=(nwalkers, 1))
Expand Down

0 comments on commit 47c7b17

Please sign in to comment.