Skip to content

Latest commit

 

History

History

hyperparameters_in_al

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Study on Hyperparameters in Deep Active Learning

This is the official implementation for the paper Role of Hyperparameters in Deep Active Learning.

Setup

To run the provided python scripts you need to set up and use the following environment.

conda create -n dal-toolbox python=3.9
conda activate dal-toolbox
pip install .
pip install -U "ray[tune]"
pip install hydra-core optuna

Make sure you are in the root directory of this repository to correctly install the dal-toolbox package.

Reproducibility

All experiments conducted in the paper are located under the ./slurm directory.

Results

Here, we report results for the CIFAR-10 and CIFAR-100 datasets.

CIFAR-10

2K HP 1 HP 2 HP 3 HP 4
AL BO AL BO AL BO AL BO
Random 75.11 ± 01.03 76.96 ± 00.43 70.76 ± 00.64 77.72 ± 00.17 68.04 ± 04.19 77.14 ± 00.59 71.68 ± 00.97 77.33 ± 00.22
Entropy 75.45 ± 00.33 77.63 ± 00.34 72.25 ± 00.83 77.78 ± 00.76 35.39 ± 07.59 77.12 ± 00.24 33.49 ± 18.12 76.61 ± 01.17
Core-Sets 76.62 ± 00.55 77.42 ± 00.09 71.02 ± 00.94 76.47 ± 00.83 46.45 ± 10.50 77.11 ± 02.07 67.81 ± 05.19 76.98 ± 00.88
Badge 76.56 ± 01.45 78.56 ± 00.44 72.39 ± 01.38 78.91 ± 00.48 61.85 ± 04.43 77.61 ± 00.61 69.40 ± 01.65 78.27 ± 01.37
4K HP 1 HP 2 HP 3 HP 4
AL BO AL BO AL BO AL BO
Random 83.57 ± 00.35 83.41 ± 00.52 79.83 ± 00.27 83.47 ± 00.28 75.44 ± 00.74 83.68 ± 00.25 77.06 ± 00.56 83.64 ± 00.28
Entropy 85.68 ± 00.39 84.07 ± 00.88 81.49 ± 00.51 84.57 ± 00.86 40.92 ± 12.48 84.02 ± 00.61 51.67 ± 25.27 84.05 ± 00.92
Core-Sets 85.60 ± 00.56 84.98 ± 00.37 81.32 ± 00.66 84.46 ± 00.90 48.28 ± 06.77 83.42 ± 00.77 71.38 ± 01.26 84.30 ± 00.18
Badge 85.36 ± 00.47 85.12 ± 00.72 82.09 ± 00.35 84.58 ± 00.29 55.92 ± 09.91 84.02 ± 00.23 66.07 ± 09.73 85.50 ± 00.29

CIFAR-100

2K HP 1 HP 2 HP 3 HP 4
AL BO AL BO AL BO AL BO
Random 30.64 ± 00.36 33.88 ± 02.19 25.61 ± 00.39 34.85 ± 00.96 03.71 ± 00.20 35.56 ± 00.88 21.61 ± 00.26 34.91 ± 00.10
Entropy 23.45 ± 00.43 28.67 ± 00.98 19.73 ± 00.58 25.59 ± 02.95 02.75 ± 00.47 31.62 ± 01.02 14.38 ± 01.43 27.85 ± 00.73
Core-Sets 30.66 ± 00.10 34.62 ± 01.19 24.91 ± 01.01 32.37 ± 03.41 11.05 ± 00.09 31.43 ± 01.14 22.28 ± 02.22 35.06 ± 00.70
Badge 30.34 ± 00.56 33.24 ± 01.65 25.38 ± 00.38 32.23 ± 01.64 06.14 ± 00.20 33.74 ± 01.02 21.80 ± 01.13 33.12 ± 01.47
4K HP 1 HP 2 HP 3 HP 4
AL BO AL BO AL BO AL BO
Random 38.36 ± 01.13 48.67 ± 01.06 38.01 ± 00.92 48.78 ± 00.71 03.23 ± 00.73 49.01 ± 00.56 28.10 ± 01.81 48.45 ± 00.50
Entropy 22.56 ± 01.69 41.65 ± 08.07 33.03 ± 00.93 45.53 ± 00.74 01.38 ± 00.54 48.59 ± 01.32 08.85 ± 03.15 45.49 ± 02.18
Core-Sets 38.72 ± 00.21 47.23 ± 01.54 39.26 ± 00.54 49.43 ± 00.24 09.73 ± 02.06 39.75 ± 00.58 30.48 ± 02.43 48.41 ± 01.13
Badge 39.72 ± 01.27 49.32 ± 00.58 39.21 ± 00.07 50.07 ± 01.01 06.62 ± 00.82 46.54 ± 00.83 25.52 ± 00.74 49.00 ± 00.30