This is the official implementation for the paper Role of Hyperparameters in Deep Active Learning.
To run the provided python scripts you need to set up and use the following environment.
conda create -n dal-toolbox python=3.9
conda activate dal-toolbox
pip install .
pip install -U "ray[tune]"
pip install hydra-core optuna
Make sure you are in the root directory of this repository to correctly install the dal-toolbox package.
All experiments conducted in the paper are located under the ./slurm
directory.
Here, we report results for the CIFAR-10 and CIFAR-100 datasets.
2K | HP 1 | HP 2 | HP 3 | HP 4 | ||||
---|---|---|---|---|---|---|---|---|
AL | BO | AL | BO | AL | BO | AL | BO | |
Random | 75.11 ± 01.03 | 76.96 ± 00.43 | 70.76 ± 00.64 | 77.72 ± 00.17 | 68.04 ± 04.19 | 77.14 ± 00.59 | 71.68 ± 00.97 | 77.33 ± 00.22 |
Entropy | 75.45 ± 00.33 | 77.63 ± 00.34 | 72.25 ± 00.83 | 77.78 ± 00.76 | 35.39 ± 07.59 | 77.12 ± 00.24 | 33.49 ± 18.12 | 76.61 ± 01.17 |
Core-Sets | 76.62 ± 00.55 | 77.42 ± 00.09 | 71.02 ± 00.94 | 76.47 ± 00.83 | 46.45 ± 10.50 | 77.11 ± 02.07 | 67.81 ± 05.19 | 76.98 ± 00.88 |
Badge | 76.56 ± 01.45 | 78.56 ± 00.44 | 72.39 ± 01.38 | 78.91 ± 00.48 | 61.85 ± 04.43 | 77.61 ± 00.61 | 69.40 ± 01.65 | 78.27 ± 01.37 |
4K | HP 1 | HP 2 | HP 3 | HP 4 | ||||
---|---|---|---|---|---|---|---|---|
AL | BO | AL | BO | AL | BO | AL | BO | |
Random | 83.57 ± 00.35 | 83.41 ± 00.52 | 79.83 ± 00.27 | 83.47 ± 00.28 | 75.44 ± 00.74 | 83.68 ± 00.25 | 77.06 ± 00.56 | 83.64 ± 00.28 |
Entropy | 85.68 ± 00.39 | 84.07 ± 00.88 | 81.49 ± 00.51 | 84.57 ± 00.86 | 40.92 ± 12.48 | 84.02 ± 00.61 | 51.67 ± 25.27 | 84.05 ± 00.92 |
Core-Sets | 85.60 ± 00.56 | 84.98 ± 00.37 | 81.32 ± 00.66 | 84.46 ± 00.90 | 48.28 ± 06.77 | 83.42 ± 00.77 | 71.38 ± 01.26 | 84.30 ± 00.18 |
Badge | 85.36 ± 00.47 | 85.12 ± 00.72 | 82.09 ± 00.35 | 84.58 ± 00.29 | 55.92 ± 09.91 | 84.02 ± 00.23 | 66.07 ± 09.73 | 85.50 ± 00.29 |
2K | HP 1 | HP 2 | HP 3 | HP 4 | ||||
---|---|---|---|---|---|---|---|---|
AL | BO | AL | BO | AL | BO | AL | BO | |
Random | 30.64 ± 00.36 | 33.88 ± 02.19 | 25.61 ± 00.39 | 34.85 ± 00.96 | 03.71 ± 00.20 | 35.56 ± 00.88 | 21.61 ± 00.26 | 34.91 ± 00.10 |
Entropy | 23.45 ± 00.43 | 28.67 ± 00.98 | 19.73 ± 00.58 | 25.59 ± 02.95 | 02.75 ± 00.47 | 31.62 ± 01.02 | 14.38 ± 01.43 | 27.85 ± 00.73 |
Core-Sets | 30.66 ± 00.10 | 34.62 ± 01.19 | 24.91 ± 01.01 | 32.37 ± 03.41 | 11.05 ± 00.09 | 31.43 ± 01.14 | 22.28 ± 02.22 | 35.06 ± 00.70 |
Badge | 30.34 ± 00.56 | 33.24 ± 01.65 | 25.38 ± 00.38 | 32.23 ± 01.64 | 06.14 ± 00.20 | 33.74 ± 01.02 | 21.80 ± 01.13 | 33.12 ± 01.47 |
4K | HP 1 | HP 2 | HP 3 | HP 4 | ||||
---|---|---|---|---|---|---|---|---|
AL | BO | AL | BO | AL | BO | AL | BO | |
Random | 38.36 ± 01.13 | 48.67 ± 01.06 | 38.01 ± 00.92 | 48.78 ± 00.71 | 03.23 ± 00.73 | 49.01 ± 00.56 | 28.10 ± 01.81 | 48.45 ± 00.50 |
Entropy | 22.56 ± 01.69 | 41.65 ± 08.07 | 33.03 ± 00.93 | 45.53 ± 00.74 | 01.38 ± 00.54 | 48.59 ± 01.32 | 08.85 ± 03.15 | 45.49 ± 02.18 |
Core-Sets | 38.72 ± 00.21 | 47.23 ± 01.54 | 39.26 ± 00.54 | 49.43 ± 00.24 | 09.73 ± 02.06 | 39.75 ± 00.58 | 30.48 ± 02.43 | 48.41 ± 01.13 |
Badge | 39.72 ± 01.27 | 49.32 ± 00.58 | 39.21 ± 00.07 | 50.07 ± 01.01 | 06.62 ± 00.82 | 46.54 ± 00.83 | 25.52 ± 00.74 | 49.00 ± 00.30 |