-
Notifications
You must be signed in to change notification settings - Fork 53
/
Copy patheval_snli_emb.py
357 lines (281 loc) · 15.2 KB
/
eval_snli_emb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
# -*- coding: utf-8 -*-
"""
Dinghan Shen
Baseline Needs More Love: On Simple Word-Embedding-Based Models and Associated Pooling Mechanisms (ACL 2018)
"""
import os
GPUID = 0
os.environ['CUDA_VISIBLE_DEVICES'] = str(GPUID)
import tensorflow as tf
from tensorflow.contrib import learn
from tensorflow.contrib import layers
# from tensorflow.contrib import metrics
# from tensorflow.contrib.learn import monitors
from tensorflow.contrib import framework
from tensorflow.contrib.learn.python.learn import learn_runner
from tensorflow.python.platform import tf_logging as logging
# from tensorflow.contrib.learn.python.learn.metric_spec import MetricSpec
import cPickle
import numpy as np
import os
import scipy.io as sio
from math import floor
import pdb
from model import *
from utils import prepare_data_for_cnn, prepare_data_for_rnn, get_minibatches_idx, normalizing, restore_from_save\
, _clip_gradients_seperate_norm, tensors_key_in_file, prepare_data_for_emb
# import tempfile
# from tensorflow.examples.tutorials.mnist import input_data
logging.set_verbosity(logging.INFO)
# Basic model parameters as external flags.
flags = tf.app.flags
FLAGS = flags.FLAGS
# flags.DEFINE_string('train_dir', 'data', 'Directory to put the training data.')
class Options(object):
def __init__(self):
self.fix_emb = True
#self.relu_w = True
#self.reuse_w = False
self.reuse_cnn = False
self.reuse_discrimination = True # reuse cnn for discrimination
self.restore = True
self.tanh = False # activation fun for the top layer of cnn, otherwise relu
self.model = 'cnn_deconv' # 'cnn_rnn', 'rnn_rnn' , default: cnn_deconv
self.permutation = 0
self.substitution = None # Deletion(d), Insertion(a), Substitution(s) and Permutation(p)
self.W_emb = None
self.cnn_W = None
self.cnn_b = None
self.maxlen = 69
self.n_words = None
self.filter_shape = 5
self.filter_size = 300
self.multiplier = 2 # filtersize multiplier
self.embed_size = 300
self.lr = 3e-4
self.layer = 3
self.stride = [2, 2, 2] # for two layer cnn/deconv, use self.stride[0]
self.batch_size = 307 # 9824
self.max_epochs = 5000
self.n_gan = 500 # self.filter_size * 3
self.L = 100
self.encoder = 'max' # 'max' 'concat'
self.combine_enc = 'mix'
self.category = 3 # '1' for binary
self.optimizer = 'RMSProp' # tf.train.AdamOptimizer(beta1=0.9) #'Adam' # 'Momentum' , 'RMSProp'
self.dropout_ratio = 0.8
# self.save_path = "./save/snli_emb_10"
self.save_path = "./save/snli_emb_10"
self.log_path = "./log"
self.valid_freq = 100
# partially use labeled data
self.part_data = False
self.portion = 0.01 # 10% 1%
self.discrimination = False
self.H_dis = 300
self.sent_len = self.maxlen + 2 * (self.filter_shape - 1)
self.sent_len2 = np.int32(floor((self.sent_len - self.filter_shape) / self.stride[0]) + 1)
self.sent_len3 = np.int32(floor((self.sent_len2 - self.filter_shape) / self.stride[1]) + 1)
self.sent_len4 = np.int32(floor((self.sent_len3 - self.filter_shape) / self.stride[2]) + 1)
print ('Use model %s' % self.model)
print ('Use %d conv/deconv layers' % self.layer)
def __iter__(self):
for attr, value in self.__dict__.iteritems():
yield attr, value
def auto_encoder(x_1, x_2, x_mask_1, x_mask_2, y, dropout, opt):
x_1_emb, W_emb = embedding(x_1, opt) # batch L emb
x_2_emb = tf.nn.embedding_lookup(W_emb, x_2)
x_1_emb = tf.nn.dropout(x_1_emb, dropout) # batch L emb
x_2_emb = tf.nn.dropout(x_2_emb, dropout) # batch L emb
biasInit = tf.constant_initializer(0.001, dtype=tf.float32)
x_1_emb = layers.fully_connected(tf.squeeze(x_1_emb), num_outputs=opt.embed_size, biases_initializer=biasInit, activation_fn=tf.nn.relu, scope='trans', reuse=None) # batch L emb
x_2_emb = layers.fully_connected(tf.squeeze(x_2_emb), num_outputs=opt.embed_size, biases_initializer=biasInit, activation_fn=tf.nn.relu, scope='trans', reuse=True)
x_1_emb = tf.expand_dims(x_1_emb, 3) # batch L emb 1
x_2_emb = tf.expand_dims(x_2_emb, 3)
if opt.encoder == 'aver':
H_enc_1 = aver_emb_encoder(x_1_emb, x_mask_1)
H_enc_2 = aver_emb_encoder(x_2_emb, x_mask_2)
elif opt.encoder == 'max':
H_enc_1 = max_emb_encoder(x_1_emb, x_mask_1, opt)
H_enc_2 = max_emb_encoder(x_2_emb, x_mask_2, opt)
elif opt.encoder == 'concat':
H_enc_1 = concat_emb_encoder(x_1_emb, x_mask_1, opt)
H_enc_2 = concat_emb_encoder(x_2_emb, x_mask_2, opt)
# discriminative loss term
if opt.combine_enc == 'mult':
H_enc = tf.multiply(H_enc_1, H_enc_2) # batch * n_gan
if opt.combine_enc == 'concat':
H_enc = tf.concat([H_enc_1, H_enc_2], 1)
if opt.combine_enc == 'sub':
H_enc = tf.subtract(H_enc_1, H_enc_2)
if opt.combine_enc == 'mix':
H_1 = tf.multiply(H_enc_1, H_enc_2)
H_2 = tf.concat([H_enc_1, H_enc_2], 1)
H_3 = tf.subtract(H_enc_1, H_enc_2)
H_enc = tf.concat([H_1, H_2, H_3], 1)
# calculate the accuracy
logits = discriminator_2layer(H_enc, opt, dropout, prefix='classify_', num_outputs=opt.category, is_reuse=None)
prob = tf.nn.softmax(logits)
correct_prediction = tf.equal(tf.argmax(prob, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=logits))
train_op = layers.optimize_loss(
loss,
framework.get_global_step(),
optimizer='Adam',
# variables=d_vars,
learning_rate=opt.lr)
return accuracy, loss, train_op, W_emb
def main():
loadpath = "./data/snli.p"
x = cPickle.load(open(loadpath, "rb"))
train, val, test = x[0], x[1], x[2]
wordtoix, ixtoword = x[4], x[5]
train_q, train_a, train_lab = train[0], train[1], train[2]
val_q, val_a, val_lab = val[0], val[1], val[2]
test_q, test_a, test_lab = test[0], test[1], test[2]
train_lab = np.array(train_lab, dtype='float32')
val_lab = np.array(val_lab, dtype='float32')
test_lab = np.array(test_lab, dtype='float32')
opt = Options()
opt.n_words = len(ixtoword)
del x
print(dict(opt))
print('Total words: %d' % opt.n_words)
if opt.part_data:
np.random.seed(123)
train_ind = np.random.choice(len(train_q), int(len(train_q)*opt.portion), replace=False)
train_q = [train_q[t] for t in train_ind]
train_a = [train_a[t] for t in train_ind]
train_lab = [train_lab[t] for t in train_ind]
try:
params = np.load('./data/snli_emb.p')
if params[0].shape == (opt.n_words, opt.embed_size):
print('Use saved embedding.')
#pdb.set_trace()
opt.W_emb = np.array(params[0], dtype='float32')
else:
print('Emb Dimension mismatch: param_g.npz:' + str(params[0].shape) + ' opt: ' + str(
(opt.n_words, opt.embed_size)))
opt.fix_emb = False
except IOError:
print('No embedding file found.')
opt.fix_emb = False
with tf.device('/gpu:1'):
x_1_ = tf.placeholder(tf.int32, shape=[opt.batch_size, opt.maxlen])
x_2_ = tf.placeholder(tf.int32, shape=[opt.batch_size, opt.maxlen])
x_mask_1_ = tf.placeholder(tf.float32, shape=[opt.batch_size, opt.maxlen])
x_mask_2_ = tf.placeholder(tf.float32, shape=[opt.batch_size, opt.maxlen])
y_ = tf.placeholder(tf.float32, shape=[opt.batch_size, opt.category])
keep_prob = tf.placeholder(tf.float32)
accuracy_, loss_, train_op_, W_emb_ = auto_encoder(x_1_, x_2_, x_mask_1_, x_mask_2_, y_, keep_prob, opt)
merged = tf.summary.merge_all()
uidx = 0
max_val_accuracy = 0.
max_test_accuracy = 0.
# gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=1)
config = tf.ConfigProto(log_device_placement=False, allow_soft_placement=True)
config.gpu_options.allow_growth = True
np.set_printoptions(precision=3)
np.set_printoptions(threshold=np.inf)
saver = tf.train.Saver()
with tf.Session(config=config) as sess:
train_writer = tf.summary.FileWriter(opt.log_path + '/train', sess.graph)
test_writer = tf.summary.FileWriter(opt.log_path + '/test', sess.graph)
sess.run(tf.global_variables_initializer())
if opt.restore:
try:
#pdb.set_trace()
t_vars = tf.trainable_variables()
# print([var.name[:-2] for var in t_vars])
save_keys = tensors_key_in_file(opt.save_path)
# pdb.set_trace()
# print(save_keys.keys())
ss = set([var.name for var in t_vars]) & set([s + ":0" for s in save_keys.keys()])
cc = {var.name: var for var in t_vars}
#pdb.set_trace()
# only restore variables with correct shape
ss_right_shape = set([s for s in ss if cc[s].get_shape() == save_keys[s[:-2]]])
loader = tf.train.Saver(var_list=[var for var in t_vars if var.name in ss_right_shape])
loader.restore(sess, opt.save_path)
print("Loading variables from '%s'." % opt.save_path)
print("Loaded variables:" + str(ss))
except:
print("No saving session, using random initialization")
sess.run(tf.global_variables_initializer())
try:
for epoch in range(opt.max_epochs):
print("Starting epoch %d" % epoch)
kf = get_minibatches_idx(len(train_q), opt.batch_size, shuffle=True)
for _, train_index in kf:
uidx += 1
sents_1 = [train_q[t] for t in train_index]
sents_2 = [train_a[t] for t in train_index]
x_labels = [train_lab[t] for t in train_index]
x_labels = np.array(x_labels)
x_labels = x_labels.reshape((len(x_labels), opt.category))
x_batch_1, x_batch_mask_1 = prepare_data_for_emb(sents_1, opt)
x_batch_2, x_batch_mask_2 = prepare_data_for_emb(sents_2, opt)
_, loss = sess.run([train_op_, loss_], feed_dict={x_1_: x_batch_1, x_2_: x_batch_2,
x_mask_1_: x_batch_mask_1, x_mask_2_: x_batch_mask_2, y_: x_labels, keep_prob: opt.dropout_ratio})
if uidx % opt.valid_freq == 0:
train_correct = 0.0
kf_train = get_minibatches_idx(3070, opt.batch_size, shuffle=True)
for _, train_index in kf_train:
train_sents_1 = [train_q[t] for t in train_index]
train_sents_2 = [train_a[t] for t in train_index]
train_labels = [train_lab[t] for t in train_index]
train_labels = np.array(train_labels)
train_labels = train_labels.reshape((len(train_labels), opt.category))
x_train_batch_1, x_train_mask_1 = prepare_data_for_emb(train_sents_1, opt)
x_train_batch_2, x_train_mask_2 = prepare_data_for_emb(train_sents_2, opt)
train_accuracy = sess.run(accuracy_,
feed_dict={x_1_: x_train_batch_1, x_2_: x_train_batch_2, x_mask_1_: x_train_mask_1, x_mask_2_: x_train_mask_2,
y_: train_labels, keep_prob: 1.0})
train_correct += train_accuracy * len(train_index)
train_accuracy = train_correct / 3070
# print("Iteration %d: Training loss %f, dis loss %f, rec loss %f" % (uidx,
# loss, dis_loss, rec_loss))
print("Train accuracy %f " % train_accuracy)
val_correct = 0.0
is_train = True
kf_val = get_minibatches_idx(len(val_q), opt.batch_size, shuffle=True)
for _, val_index in kf_val:
val_sents_1 = [val_q[t] for t in val_index]
val_sents_2 = [val_a[t] for t in val_index]
val_labels = [val_lab[t] for t in val_index]
val_labels = np.array(val_labels)
val_labels = val_labels.reshape((len(val_labels), opt.category))
x_val_batch_1, x_val_mask_1 = prepare_data_for_emb(val_sents_1, opt)
x_val_batch_2, x_val_mask_2 = prepare_data_for_emb(val_sents_2, opt)
val_accuracy = sess.run(accuracy_, feed_dict={x_1_: x_val_batch_1, x_2_: x_val_batch_2,
x_mask_1_: x_val_mask_1, x_mask_2_: x_val_mask_2, y_: val_labels, keep_prob: 1.0})
val_correct += val_accuracy * len(val_index)
val_accuracy = val_correct / len(val_q)
print("Validation accuracy %f " % val_accuracy)
if val_accuracy > max_val_accuracy:
max_val_accuracy = val_accuracy
test_correct = 0.0
kf_test = get_minibatches_idx(len(test_q), opt.batch_size, shuffle=True)
for _, test_index in kf_test:
test_sents_1 = [test_q[t] for t in test_index]
test_sents_2 = [test_a[t] for t in test_index]
test_labels = [test_lab[t] for t in test_index]
test_labels = np.array(test_labels)
test_labels = test_labels.reshape((len(test_labels), opt.category))
x_test_batch_1, x_test_mask_1 = prepare_data_for_emb(test_sents_1, opt)
x_test_batch_2, x_test_mask_2 = prepare_data_for_emb(test_sents_2, opt)
test_accuracy = sess.run(accuracy_, feed_dict={x_1_: x_test_batch_1, x_2_: x_test_batch_2,
x_mask_1_: x_test_mask_1, x_mask_2_: x_test_mask_2,
y_: test_labels, keep_prob: 1.0})
test_correct += test_accuracy * len(test_index)
test_accuracy = test_correct / len(test_q)
print("Test accuracy %f " % test_accuracy)
max_test_accuracy = test_accuracy
print("Epoch %d: Max Test accuracy %f" % (epoch, max_test_accuracy))
print("Max Test accuracy %f " % max_test_accuracy)
except KeyboardInterrupt:
print('Training interupted')
print("Max Test accuracy %f " % max_test_accuracy)
if __name__ == '__main__':
main()