-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathevaluate_few_shot_cot.py
109 lines (80 loc) · 2.92 KB
/
evaluate_few_shot_cot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import os
import json
import pandas as pd
import torch
import tqdm
import re
from process_data import process_data_few_shot_cot, parse_json_test_to_lists
from config import get_config
from peft import (
LoraConfig,
PeftConfig,
PeftModel,
get_peft_model,
prepare_model_for_kbit_training
)
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig
)
def main():
config = get_config()
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
PEFT_MODEL = f"{config.hf_account}/{config.model_hf_name}"
lora_config = PeftConfig.from_pretrained(PEFT_MODEL)
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
model = AutoModelForCausalLM.from_pretrained(
lora_config.base_model_name_or_path,
return_dict=True,
quantization_config=bnb_config,
device_map="auto",
trust_remote_code=True
)
tokenizer=AutoTokenizer.from_pretrained(lora_config.base_model_name_or_path)
tokenizer.pad_token = tokenizer.eos_token
model = PeftModel.from_pretrained(model, PEFT_MODEL).to(DEVICE)
generation_config = model.generation_config
generation_config.max_new_tokens = config.max_new_tokens
generation_config.temperature = config.temperature
generation_config.top_p = config.top_p
generation_config.num_return_sequences = config.num_return_sequences
generation_config.pad_token_id = tokenizer.eos_token_id
generation_config.eos_token_id = tokenizer.eos_token_id
test_samples = process_data_few_shot_cot(config.dataset_test)
results = []
for problem in test_samples:
encoding = tokenizer(problem, return_tensors="pt").to(DEVICE)
with torch.inference_mode():
outputs = model.generate(
input_ids=encoding.input_ids,
attention_mask=encoding.attention_mask,
generation_config=generation_config
)
solution = tokenizer.decode(outputs[0], skip_special_tokens=True)
result = re.findall(r'\\boxed\{(.*)\}', solution)[-1]
if result == "":
result = 'E'
results.append(result)
dic = parse_json_test_to_lists(config.dataset_test)
list_id = dic["list_id"]
list_question = dic["list_question"]
list_A = dic["list_A"]
list_B = dic["list_B"]
list_C = dic["list_C"]
list_D = dic["list_D"]
list_answer = dic["list_answer"]
df_test = pd.DataFrame(list(zip(list_id, list_question, list_A, list_B, list_C, list_D, list_answer, results)),
columns=['id', 'question', 'A', 'B', 'C', 'D', 'answer', 'result'])
correct = (df_test['answer'] == df_test['result']).sum()
total = len(df_test)
accuracy = correct / total
print("Accuracy:", accuracy)
if __name__ == '__main__':
main()