forked from rlcode/reinforcement-learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cartpole_a2c.py
135 lines (110 loc) · 4.84 KB
/
cartpole_a2c.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import sys
import gym
import pylab
import numpy as np
from keras.layers import Dense
from keras.models import Sequential
from keras.optimizers import Adam
EPISODES = 1000
# A2C(Advantage Actor-Critic) agent for the Cartpole
class A2CAgent:
def __init__(self, state_size, action_size):
# if you want to see Cartpole learning, then change to True
self.render = False
self.load_model = False
# get size of state and action
self.state_size = state_size
self.action_size = action_size
self.value_size = 1
# These are hyper parameters for the Policy Gradient
self.discount_factor = 0.99
self.actor_lr = 0.001
self.critic_lr = 0.005
# create model for policy network
self.actor = self.build_actor()
self.critic = self.build_critic()
if self.load_model:
self.actor.load_weights("./save_model/cartpole_actor.h5")
self.critic.load_weights("./save_model/cartpole_critic.h5")
# approximate policy and value using Neural Network
# actor: state is input and probability of each action is output of model
def build_actor(self):
actor = Sequential()
actor.add(Dense(24, input_dim=self.state_size, activation='relu',
kernel_initializer='he_uniform'))
actor.add(Dense(self.action_size, activation='softmax',
kernel_initializer='he_uniform'))
actor.summary()
# See note regarding crossentropy in cartpole_reinforce.py
actor.compile(loss='categorical_crossentropy',
optimizer=Adam(lr=self.actor_lr))
return actor
# critic: state is input and value of state is output of model
def build_critic(self):
critic = Sequential()
critic.add(Dense(24, input_dim=self.state_size, activation='relu',
kernel_initializer='he_uniform'))
critic.add(Dense(self.value_size, activation='linear',
kernel_initializer='he_uniform'))
critic.summary()
critic.compile(loss="mse", optimizer=Adam(lr=self.critic_lr))
return critic
# using the output of policy network, pick action stochastically
def get_action(self, state):
policy = self.actor.predict(state, batch_size=1).flatten()
return np.random.choice(self.action_size, 1, p=policy)[0]
# update policy network every episode
def train_model(self, state, action, reward, next_state, done):
target = np.zeros((1, self.value_size))
advantages = np.zeros((1, self.action_size))
value = self.critic.predict(state)[0]
next_value = self.critic.predict(next_state)[0]
if done:
advantages[0][action] = reward - value
target[0][0] = reward
else:
advantages[0][action] = reward + self.discount_factor * (next_value) - value
target[0][0] = reward + self.discount_factor * next_value
self.actor.fit(state, advantages, epochs=1, verbose=0)
self.critic.fit(state, target, epochs=1, verbose=0)
if __name__ == "__main__":
# In case of CartPole-v1, maximum length of episode is 500
env = gym.make('CartPole-v1')
# get size of state and action from environment
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
# make A2C agent
agent = A2CAgent(state_size, action_size)
scores, episodes = [], []
for e in range(EPISODES):
done = False
score = 0
state = env.reset()
state = np.reshape(state, [1, state_size])
while not done:
if agent.render:
env.render()
action = agent.get_action(state)
next_state, reward, done, info = env.step(action)
next_state = np.reshape(next_state, [1, state_size])
# if an action make the episode end, then gives penalty of -100
reward = reward if not done or score == 499 else -100
agent.train_model(state, action, reward, next_state, done)
score += reward
state = next_state
if done:
# every episode, plot the play time
score = score if score == 500.0 else score + 100
scores.append(score)
episodes.append(e)
pylab.plot(episodes, scores, 'b')
pylab.savefig("./save_graph/cartpole_a2c.png")
print("episode:", e, " score:", score)
# if the mean of scores of last 10 episode is bigger than 490
# stop training
if np.mean(scores[-min(10, len(scores)):]) > 490:
sys.exit()
# save the model
if e % 50 == 0:
agent.actor.save_weights("./save_model/cartpole_actor.h5")
agent.critic.save_weights("./save_model/cartpole_critic.h5")