forked from rui314/mold
-
Notifications
You must be signed in to change notification settings - Fork 0
/
compress.cc
167 lines (136 loc) · 4.82 KB
/
compress.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
// This file implements a multi-threaded zlib compression routine.
//
// Multiple pieces of raw compressed data in zlib-format can be merged
// just by concatenation as long as each zlib stream is flushed with
// Z_SYNC_FLUSH. In this file, we split input data into multiple
// shards, compress them individually and concatenate them. We then
// append a header, a trailer and a checksum so that the concatenated
// data is valid zlib-format data.
//
// Using threads to compress data has a downside. Since the dictionary
// is reset on boundaries of shards, compression ratio is sacrificed
// a little bit. However, if a shard size is large enough, that loss
// is negligible in practice.
#include "mold.h"
#include <tbb/parallel_for_each.h>
#include <zlib.h>
namespace mold {
static constexpr i64 SHARD_SIZE = 1024 * 1024;
static std::vector<std::string_view> split(std::string_view input) {
std::vector<std::string_view> shards;
while (input.size() >= SHARD_SIZE) {
shards.push_back(input.substr(0, SHARD_SIZE));
input = input.substr(SHARD_SIZE);
}
if (!input.empty())
shards.push_back(input);
return shards;
}
static std::vector<u8> do_compress(std::string_view input) {
// Initialize zlib stream. Since debug info is generally compressed
// pretty well with lower compression levels, we chose compression
// level 1.
z_stream strm;
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
int r = deflateInit2(&strm, 1, Z_DEFLATED, -15, 8, Z_DEFAULT_STRATEGY);
assert(r == Z_OK);
// Set an input buffer
strm.avail_in = input.size();
strm.next_in = (u8 *)input.data();
// Set an output buffer. deflateBound() returns an upper bound
// on the compression size. +16 for Z_SYNC_FLUSH.
std::vector<u8> buf(deflateBound(&strm, strm.avail_in) + 16);
strm.avail_out = buf.size();
strm.next_out = buf.data();
r = deflate(&strm, Z_SYNC_FLUSH);
assert(r == Z_OK);
assert(strm.avail_out > 0);
buf.resize(buf.size() - strm.avail_out);
deflateEnd(&strm);
return buf;
}
ZlibCompressor::ZlibCompressor(std::string_view input) {
std::vector<std::string_view> inputs = split(input);
std::vector<u64> adlers(inputs.size());
shards.resize(inputs.size());
// Compress each shard
tbb::parallel_for((i64)0, (i64)inputs.size(), [&](i64 i) {
adlers[i] = adler32(1, (u8 *)inputs[i].data(), inputs[i].size());
shards[i] = do_compress(inputs[i]);
});
// Combine checksums
checksum = adlers[0];
for (i64 i = 1; i < inputs.size(); i++)
checksum = adler32_combine(checksum, adlers[i], inputs[i].size());
}
i64 ZlibCompressor::size() const {
i64 size = 2; // +2 for header
for (const std::vector<u8> &shard : shards)
size += shard.size();
return size + 6; // +6 for trailer and checksum
}
void ZlibCompressor::write_to(u8 *buf) {
// Write a zlib-format header
buf[0] = 0x78;
buf[1] = 0x9c;
// Copy compressed data
std::vector<i64> offsets(shards.size());
offsets[0] = 2; // +2 for header
for (i64 i = 1; i < shards.size(); i++)
offsets[i] = offsets[i - 1] + shards[i - 1].size();
tbb::parallel_for((i64)0, (i64)shards.size(), [&](i64 i) {
memcpy(&buf[offsets[i]], shards[i].data(), shards[i].size());
});
// Write a trailer
u8 *end = buf + size();
end[-6] = 3;
end[-5] = 0;
// Write a checksum
*(ubig32 *)(end - 4) = checksum;
}
GzipCompressor::GzipCompressor(std::string_view input) {
std::vector<std::string_view> inputs = split(input);
std::vector<u32> crc(inputs.size());
shards.resize(inputs.size());
// Compress each shard
tbb::parallel_for((i64)0, (i64)inputs.size(), [&](i64 i) {
crc[i] = crc32(0, (u8 *)inputs[i].data(), inputs[i].size());
shards[i] = do_compress(inputs[i]);
});
// Combine checksums
checksum = crc[0];
for (i64 i = 1; i < inputs.size(); i++)
checksum = crc32_combine(checksum, crc[i], inputs[i].size());
uncompressed_size = input.size();
}
i64 GzipCompressor::size() const {
i64 size = 10; // +10 for header
for (const std::vector<u8> &shard : shards)
size += shard.size();
return size + 10; // +10 for trailer and checksum
}
void GzipCompressor::write_to(u8 *buf) {
// Write a zlib-format header
memset(buf, 0, 10);
buf[0] = 0x1f; // magic
buf[1] = 0x8b; // magic
buf[2] = 0x08; // compression method is zlib
buf[9] = 0xff; // made on unknown OS
// Copy compressed data
std::vector<i64> offsets(shards.size());
offsets[0] = 10; // +10 for header
for (i64 i = 1; i < shards.size(); i++)
offsets[i] = offsets[i - 1] + shards[i - 1].size();
tbb::parallel_for((i64)0, (i64)shards.size(), [&](i64 i) {
memcpy(&buf[offsets[i]], shards[i].data(), shards[i].size());
});
// Write a trailer
u8 *end = buf + size();
end[-10] = 0x3; // two-byte zlib stream terminator
end[-9] = 0;
*(u32 *)(end - 8) = checksum;
*(u32 *)(end - 4) = uncompressed_size;
}
} // namespace mold