-
Notifications
You must be signed in to change notification settings - Fork 12
/
dataset.py
709 lines (608 loc) · 26.4 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
import csv
import math
import nltk
import numpy as np
import os
import pprint
import pickle
import string
import torch
from torch.utils.data import Dataset
from torch.utils.data.sampler import Sampler
if not os.path.exists(os.path.join(os.path.expanduser('~'), 'nltk_data')):
# https://stackoverflow.com/a/50406704
import ssl
try:
_create_unverified_https_context = ssl._create_unverified_context
except AttributeError:
pass
else:
ssl._create_default_https_context = _create_unverified_https_context
nltk.download('punkt')
class NETSDataset(object):
def __init__(self, _config, pretrained_dict):
self.config = _config
# initial, predefined settings
self.UNK = 'UNK'
self.PAD = 'PAD'
self.BOW = 'BOW'
self.EOW = 'EOW'
self.DURATION_UNK = 0
self.feature_len = 12
self.duration_unit = 30 # min
self.max_rs_dist = 2 # reg-st week distance
self.class_div = 2 # 168 output
self.slot_size = 336
self.max_context = float("inf") # 35
self.min_word_cnt = 0
self.max_title_len = 50
self.max_word_len = 50
self.max_event_cnt = 5000
# initialize_dictionary
# dictionary specific settings
self.char2idx = {}
self.idx2char = {}
self.word2idx = {}
self.idx2word = {}
self.widx2vec = [] # pretrained
self.user2idx = {}
self.idx2user = {}
self.dur2idx = {}
self.idx2dur = {}
self.char2idx[self.PAD] = self.word2idx[self.PAD] = 0
self.char2idx[self.UNK] = self.word2idx[self.UNK] = 1
self.char2idx[self.BOW] = 2
self.char2idx[self.EOW] = 3
self.idx2char[0] = self.idx2word[0] = self.PAD
self.idx2char[1] = self.idx2word[1] = self.UNK
self.idx2char[2] = self.BOW
self.idx2char[3] = self.EOW
self.user2idx[self.UNK] = 0
self.idx2user[0] = self.UNK
self.dur2idx[self.DURATION_UNK] = 0
self.idx2dur[0] = self.DURATION_UNK
self.initial_word_dict = {}
self.invalid_weeks = set()
self.user_event_cnt = {}
assert pretrained_dict is not None
# word
self.word2idx = pretrained_dict['word2idx']
self.idx2word = pretrained_dict['idx2word']
self.widx2vec = pretrained_dict['widx2vec']
# char
self.char2idx = pretrained_dict['char2idx']
self.idx2char = pretrained_dict['idx2char']
# duration
self.dur2idx = pretrained_dict['dur2idx']
self.idx2dur = pretrained_dict['idx2dur']
# user
self.user2idx = pretrained_dict['user2idx']
self.idx2user = pretrained_dict['idx2user']
# max len
self.config.max_sentlen = pretrained_dict['config.max_sentlen']
self.config.max_wordlen = pretrained_dict['config.max_wordlen']
self.config.char_vocab_size = len(self.char2idx)
self.config.word_vocab_size = len(self.word2idx)
self.config.user_size = len(self.user2idx)
self.config.dur_size = len(self.dur2idx)
self.config.slot_size = self.slot_size
self.config.class_div = self.class_div
# only for stats
self.week_key_set = set()
self.train_data = None
self.valid_data = None
self.test_data = self.process_data(
self.config.test_path)
self.train_ptr = 0
self.valid_ptr = 0
self.test_ptr = 0
def update_dictionary(self, key, mode=None):
# update dictionary given a key
if mode == 'c':
if key not in self.char2idx:
self.char2idx[key] = len(self.char2idx)
self.idx2char[len(self.idx2char)] = key
elif mode == 'w':
if key not in self.word2idx:
self.word2idx[key] = len(self.word2idx)
self.idx2word[len(self.idx2word)] = key
elif mode == 'u':
if key not in self.user2idx:
self.user2idx[key] = len(self.user2idx)
self.idx2user[len(self.idx2user)] = key
elif mode == 'd':
if key not in self.dur2idx:
self.dur2idx[key] = len(self.dur2idx)
self.idx2dur[len(self.idx2dur)] = key
def map_dictionary(self, key_list, dictionary, reverse=False):
# mapping list of keys into dictionary
# reverse=False : word2idx, char2idx
# reverse=True : idx2word, idx2char
output = list()
for key in key_list:
if key in dictionary:
# skip PAD for reverse
if reverse and key == self.word2idx[self.PAD]:
continue
else:
output.append(dictionary[key])
else: # unknown key
if not reverse:
output.append(dictionary[self.UNK])
else:
output.append(dictionary[self.word2idx[self.UNK]])
return output
def build_word_dict(self, path, update=True):
print('### build word dict %s' % path)
def check_printable(text, w_key):
for char in text:
if char not in string.printable:
self.invalid_weeks.add(w_key)
return False
return True
def check_maxlen(text, w_key):
_what_split = nltk.word_tokenize(text)
if len(_what_split) > self.max_title_len:
self.invalid_weeks.add(w_key)
return False
for _word in _what_split:
if len(_word) > self.max_word_len:
self.invalid_weeks.add(w_key)
return False
return True
with open(path, 'r', newline='', encoding='utf-8') as f:
calendar_data = csv.reader(f, quotechar='"')
prev_what_list = list()
prev_week_key = ''
for k, features in enumerate(calendar_data):
assert len(features) == self.feature_len
what = features[1]
user_id = features[0]
st_year = features[5]
st_week = features[6]
reg_seq = int(features[7])
week_key = '_'.join([user_id, st_year, st_week])
if reg_seq == 0:
assert prev_week_key != week_key
# process previous week's what list
if prev_week_key not in self.invalid_weeks and update:
for single_what in prev_what_list:
what_split = nltk.word_tokenize(single_what)
if self.config.glove_type == 6:
what_split = [word.lower() for word
in what_split]
for word in what_split:
if word not in self.initial_word_dict:
self.initial_word_dict[word] = (
len(self.initial_word_dict), 1)
else:
self.initial_word_dict[word] = (
self.initial_word_dict[word][0],
self.initial_word_dict[word][1] + 1)
# first event should be also printable
if check_printable(what, week_key) \
and check_maxlen(what, week_key):
prev_what_list = [what]
else:
prev_what_list = list()
prev_week_key = week_key
else:
assert prev_week_key == week_key
if prev_week_key in self.invalid_weeks:
continue
# event title should be printable
if check_printable(what, prev_week_key) \
and check_maxlen(what, prev_week_key):
prev_what_list.append(what)
print('initial dict size', len(self.initial_word_dict))
def get_pretrained_word(self, path):
print('\n### load pretrained %s' % path)
word2vec = dict()
with open(path, 'r', encoding='utf-8') as f:
for line in f:
cols = line.split(' ')
if cols[0] in self.initial_word_dict:
word2vec[cols[0]] = [float(l) for l in cols[1:]]
unk_cnt = 0
self.widx2vec.append([0.] * self.config.word_embed_dim) # PAD
self.widx2vec.append([1.] * self.config.word_embed_dim) # UNK
for word, (word_idx, word_cnt) in self.initial_word_dict.items():
if word != self.UNK and word != self.PAD:
assert word_cnt > 0
if word in word2vec and word_cnt > self.min_word_cnt:
self.update_dictionary(word, 'w')
self.widx2vec.append(word2vec[word])
else:
unk_cnt += 1
print('pretrained vectors', np.asarray(self.widx2vec).shape,
'#unk', unk_cnt)
print('dictionary change', len(self.initial_word_dict),
'to', len(self.word2idx), len(self.idx2word), end='\n\n')
def process_data(self, path, update_dict=False):
print('### processing %s' % path)
total_data = list()
max_wordlen = max_sentlen = max_dur = max_context = 0
min_dur = float("inf")
max_slot_idx = (self.slot_size // self.class_div) - 1
with open(path, 'r', newline='', encoding='utf-8') as f:
"""
Each line consists of features below:
0: user id
1: what
2: duration (minute)
3: register time
4: start time
5: start year
6: start week
7: register sequence in the week
8: register start week distance
9: register start day distance
10: is recurrent?
11: start time slot (y)
"""
prev_user = ''
prev_st_yw = ('', '')
saved_context = list()
calendar_data = csv.reader(f, quotechar='"')
for k, features in enumerate(calendar_data):
assert len(features) == self.feature_len
user_id = features[0]
what = features[1]
duration = int(features[2])
# reg_time = features[3]
# st_time = features[4]
st_year = features[5]
st_week = features[6]
reg_seq = int(features[7])
reg_st_week_dist = int(features[8])
# reg_st_day_dist = int(features[9])
is_recurrent = features[10]
st_slot = int(features[11])
# remove unprintable weeks
week_key = '_'.join([user_id, st_year, st_week])
if week_key in self.invalid_weeks:
continue
# ready for one week data
curr_user = user_id
curr_st_yw = (st_year, st_week)
# filter user by event count
if user_id in self.user_event_cnt:
if self.user_event_cnt[user_id] > self.max_event_cnt:
prev_user = curr_user
prev_st_yw = curr_st_yw
continue
# ignore data that was written in future
if reg_st_week_dist < 0:
prev_user = curr_user
prev_st_yw = curr_st_yw
continue
input_user = self.user2idx[self.UNK]
# process title feature
what_split = nltk.word_tokenize(what)
if self.config.glove_type == 6:
what_split = [word.lower() for word in what_split]
for word in what_split:
max_wordlen = \
len(word) if len(word) > max_wordlen else max_wordlen
max_sentlen = \
len(what_split) if len(what_split) > max_sentlen \
else max_sentlen
if update_dict:
for char in what:
self.update_dictionary(char, 'c')
if max_wordlen > self.config.max_wordlen:
self.config.max_wordlen = max_wordlen
if max_sentlen > self.config.max_sentlen:
self.config.max_sentlen = max_sentlen
sentchar = list()
for word in what_split:
sentchar.append([self.char2idx[self.BOW]] +
self.map_dictionary(word, self.char2idx) +
[self.char2idx[self.EOW]])
sentword = self.map_dictionary(what_split, self.word2idx)
length = len(sentword)
assert len(sentword) == len(sentchar)
input_title = [sentchar, sentword, length]
# process duration feature
max_dur = max_dur if max_dur > duration else duration
min_dur = min_dur if min_dur < duration else duration
fine_duration = \
(duration//self.duration_unit) * self.duration_unit
fine_duration += (int(duration % self.duration_unit > 0) *
self.duration_unit)
if duration % self.duration_unit == 0:
assert duration == fine_duration
else:
assert fine_duration - duration < self.duration_unit
if update_dict:
self.update_dictionary(fine_duration, 'd')
input_duration = self.dur2idx[fine_duration]
# TODO: process reg_time feature
# process st_slot feature
assert st_slot < self.slot_size
input_slot = st_slot // self.class_div
target_slot = st_slot // self.class_div
# process context
if reg_seq == 0: # start of a new week
assert curr_user != prev_user or curr_st_yw != prev_st_yw
prev_user = curr_user
prev_st_yw = curr_st_yw
input_context = list()
saved_context = [[input_title, fine_duration, input_slot]]
else: # same as the prev week
assert curr_user == prev_user and curr_st_yw == prev_st_yw
# input_context = copy.deepcopy(saved_context)
prev_grid = [svs[2] for svs in saved_context]
if input_slot in prev_grid:
continue
input_context = saved_context[:]
saved_context.append(
[input_title, fine_duration, input_slot])
# transform context features into slot grid
# context slots w/ durations
input_grid = set()
for ips in input_context:
n_slots = int(math.ceil(ips[1] / (30 * self.class_div)))
for slot_idx in range(n_slots):
slot = ips[2] + slot_idx
if slot >= max_slot_idx:
break
input_grid.add(slot)
# filter by register distance & max_context & recurrent
if (reg_st_week_dist <= self.max_rs_dist
and len(input_context) <= self.max_context
and 'False' == is_recurrent):
max_context = max_context \
if max_context > len(input_context) \
else len(input_context)
total_data.append(
[input_user, input_title, input_duration,
input_context, list(input_grid), target_slot])
if user_id not in self.user_event_cnt:
self.user_event_cnt[user_id] = 1
else:
self.user_event_cnt[user_id] += 1
self.week_key_set.add(week_key)
if update_dict:
self.config.char_vocab_size = len(self.char2idx)
self.config.word_vocab_size = len(self.word2idx)
self.config.user_size = len(self.user2idx)
self.config.dur_size = len(self.dur2idx)
self.config.slot_size = self.slot_size
self.config.class_div = self.class_div
print('data size', len(total_data))
print('max duration', max_dur)
print('min duration', min_dur)
print('max context', max_context)
print('max wordlen', max_wordlen)
print('max sentlen', max_sentlen, end='\n\n')
return total_data
def get_dataloader(self, batch_size=None, shuffle=True, use_cuda=False):
if batch_size is None:
batch_size = self.config.batch_size
if self.train_data:
train_dataset = Vectorize(self.train_data, self.config)
train_sampler = SortedBatchSampler(train_dataset.lengths(),
batch_size,
shuffle=shuffle)
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=batch_size,
sampler=train_sampler,
num_workers=self.config.data_workers,
collate_fn=self.batchify,
pin_memory=use_cuda,
)
else:
train_loader = None
if self.valid_data:
valid_dataset = Vectorize(self.valid_data, self.config)
valid_sampler = SortedBatchSampler(valid_dataset.lengths(),
batch_size,
shuffle=False)
valid_loader = torch.utils.data.DataLoader(
valid_dataset,
batch_size=batch_size,
sampler=valid_sampler,
num_workers=self.config.data_workers,
collate_fn=self.batchify,
pin_memory=use_cuda,
)
else:
valid_loader = None
test_dataset = Vectorize(self.test_data, self.config)
test_sampler = SortedBatchSampler(test_dataset.lengths(),
batch_size,
shuffle=False)
test_loader = torch.utils.data.DataLoader(
test_dataset,
batch_size=batch_size,
sampler=test_sampler,
num_workers=self.config.data_workers,
collate_fn=self.batchify,
pin_memory=use_cuda,
)
return train_loader, valid_loader, test_loader
@staticmethod
def batchify(batch):
users = torch.cat([example[0] for example in batch])
durs = torch.cat([example[1] for example in batch])
tcs = [example[2] for example in batch]
tws = [example[3] for example in batch]
tls = [example[4] for example in batch]
stcs = [example[5] for example in batch]
stws = [example[6] for example in batch]
stls = [example[7] for example in batch]
sdurs = [example[8] for example in batch]
sslots = [example[9] for example in batch]
grids = torch.cat([example[10].unsqueeze(0) for example in batch])
targets = torch.cat([example[11] for example in batch])
return (users, durs, tcs, tws, tls,
stcs, stws, stls, sdurs, sslots, grids, targets)
def get_train_class_counts(self):
cnt_list = [0] * (self.slot_size // self.class_div)
for td in self.train_data:
cnt_list[td[5]] += 1
assert len(self.train_data) == sum(cnt_list)
return cnt_list
def get_class_weights(self):
cnt_list = self.get_train_class_counts()
# http://scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_class_weight.html
n_classes = self.slot_size // self.class_div
n_samples = sum(cnt_list)
assert len(cnt_list) == n_classes
return [n_samples / (n_classes * cnt) for cnt in cnt_list]
def get_train_user_class_dist(self):
user_prob_dist_dict = dict()
# unknown/global
unknown_user_idx = self.user2idx[self.UNK]
user_prob_dist_dict[unknown_user_idx] = \
[0.] * (self.slot_size // self.class_div)
for td in self.train_data:
user_idx = td[0]
assert user_idx != unknown_user_idx
target = td[5]
u_prob_dist = user_prob_dist_dict.get(user_idx)
if u_prob_dist is None:
u_prob_dist = [0.] * (self.slot_size // self.class_div)
u_prob_dist[target] += 1.
user_prob_dist_dict[user_idx] = u_prob_dist
else:
u_prob_dist[target] += 1.
# unknown/global
user_prob_dist_dict[unknown_user_idx][target] += 1.
# normalize
for uidx in user_prob_dist_dict:
user_prob_dist = user_prob_dist_dict[uidx]
num_u_events = sum(user_prob_dist)
user_prob_dist_dict[uidx] = \
[cnt/num_u_events for cnt in user_prob_dist]
# print(uidx, user_prob_dist_dict[uidx][:24])
# handle unseen users
for uidx in self.idx2user:
if uidx not in user_prob_dist_dict:
user_prob_dist_dict[uidx] = \
user_prob_dist_dict[unknown_user_idx]
return user_prob_dist_dict
class Vectorize(Dataset):
def __init__(self, examples, cfg):
self.examples = examples
self.config = cfg
def __len__(self):
return len(self.examples)
def __getitem__(self, index):
example = self.examples[index]
# user and duration
user = torch.LongTensor([example[0]])
dur = torch.LongTensor([example[2]])
# Title (char, word, length) => will be converted to
# tensors in the model (due to paddings)
title = example[1]
tc = title[0]
tw = title[1]
tl = title[2]
# context (title, duration, slot)
context = example[3]
stc = list()
stw = list()
stl = list()
sdur = list()
sslot = list()
for _, event in enumerate(context):
stc.append(event[0][0])
stw.append(event[0][1])
stl.append(event[0][2])
sdur.append(event[1])
sslot.append(event[2])
# Grid
grid = torch.zeros(self.config.sm_day_num * self.config.sm_slot_num)
if len(example[4]) > 0:
grid[example[4]] = 1
# Target
target = torch.LongTensor([example[5]])
return user, dur, tc, tw, tl, stc, stw, stl, sdur, sslot, grid, target
def lengths(self):
def maxlen_from_context(contexts):
if len(contexts) > 0:
return max([s[0][2] for s in contexts])
else:
return 0
return [(example[1][2], maxlen_from_context(example[3]))
for example in self.examples]
class SortedBatchSampler(Sampler):
def __init__(self, lengths, batch_size, shuffle=True):
super(SortedBatchSampler, self).__init__(None)
self.lengths = lengths
self.batch_size = batch_size
self.shuffle = shuffle
def __iter__(self):
lengths = np.array(
[(l[0], l[1], np.random.random()) for l in self.lengths],
dtype=[('l1', np.int_), ('l2', np.int_), ('rand', np.float_)]
)
indices = np.argsort(lengths, order=('l2', 'l1', 'rand'))
batches = [indices[i:i + self.batch_size]
for i in range(0, len(indices), self.batch_size)]
if self.shuffle:
np.random.shuffle(batches)
return iter([i for batch in batches for i in batch])
def __len__(self):
return len(self.lengths)
class Config(object):
def __init__(self):
path_base = './data'
self.train_path = os.path.join(path_base, 'train.csv')
self.valid_path = os.path.join(path_base, 'valid.csv')
self.test_path = os.path.join(path_base, 'test.csv')
# http://nlp.stanford.edu/data/glove.840B.300d.zip
self.glove_path = \
os.path.join(os.path.expanduser('~'), 'nlp',
'glove.840B.300d.txt')
self.glove_type = 840 # 6 or 840 (B)
assert os.path.exists(self.glove_path)
self.word_embed_dim = 300
self.batch_size = 16
self.max_wordlen = 0
self.max_sentlen = 0
self.char_vocab_size = 0
self.word_vocab_size = 0
self.user_size = 0
self.dur_size = 0
self.class_div = 0
self.slot_size = 0
self.data_workers = 0
self.save_dataset = False
self.sm_day_num = 7
self.sm_slot_num = 24
self.preprocess_save_path = './data/dataset_tmp.pkl'
self.preprocess_load_path = './data/dataset_.pkl'
if __name__ == '__main__':
config = Config()
if config.save_dataset:
dataset = NETSDataset(config)
pickle.dump(dataset, open(config.preprocess_save_path, 'wb'))
else:
print('## load preprocess %s' % config.preprocess_load_path)
dataset = pickle.load(open(config.preprocess_load_path, 'rb'))
# dataset config must be valid
pprint.PrettyPrinter().pprint(
([(k, v) for k, v in vars(dataset.config).items() if '__' not in k]))
print()
num_all_data = \
len(dataset.train_data) + len(dataset.valid_data) + \
len(dataset.test_data)
print('#all_data', num_all_data)
print('#train_data {} ({:.1f}%)'.format(
len(dataset.train_data), 100 * len(dataset.train_data) / num_all_data))
print('#valid_data {} ({:.1f}%)'.format(
len(dataset.valid_data), 100 * len(dataset.valid_data) / num_all_data))
print('#test_data {} ({:.1f}%)'.format(
len(dataset.test_data), 100 * len(dataset.test_data) / num_all_data))
class_counts = dataset.get_train_class_counts()
print('class_counts', 'min', min(class_counts), 'max', max(class_counts))
w = dataset.get_class_weights()
print('class_weights', 'min', min(w), 'max', max(w))
for d_idx, ex in enumerate(dataset.get_dataloader(batch_size=32)[0]):
if d_idx % 1000 == 0:
print(d_idx)
print('\niteration test pass!')