-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
mask_rcnn.py
441 lines (395 loc) · 20.2 KB
/
mask_rcnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
"""Mask R-CNN Model."""
from __future__ import absolute_import
import os
import warnings
import mxnet as mx
from mxnet import autograd
from mxnet.gluon import nn
from mxnet.gluon.contrib.nn import SyncBatchNorm
from .rcnn_target import MaskTargetGenerator
from ..faster_rcnn import FasterRCNN
from ..rcnn import custom_rcnn_fpn
__all__ = ['MaskRCNN', 'get_mask_rcnn', 'custom_mask_rcnn_fpn']
class Mask(nn.HybridBlock):
r"""Mask predictor head
Parameters
----------
batch_images : int
Used to reshape output
classes : iterable of str
Used to determine number of output channels, and store class names
mask_channels : int
Used to determine number of hidden channels
num_fcn_convs : int, default 0
number of convolution blocks before deconv layer. For FPN network this is typically 4.
"""
def __init__(self, batch_images, classes, mask_channels, num_fcn_convs=0, norm_layer=None,
norm_kwargs=None, **kwargs):
super(Mask, self).__init__(**kwargs)
self._batch_images = batch_images
self.classes = classes
init = mx.init.Xavier(rnd_type='gaussian', factor_type='out', magnitude=2)
with self.name_scope():
if num_fcn_convs > 0:
self.deconv = nn.HybridSequential()
for _ in range(num_fcn_convs):
self.deconv.add(
nn.Conv2D(mask_channels, kernel_size=(3, 3), strides=(1, 1),
padding=(1, 1), weight_initializer=init))
if norm_layer is not None and norm_layer is SyncBatchNorm:
self.deconv.add(norm_layer(**norm_kwargs))
self.deconv.add(nn.Activation('relu'))
self.deconv.add(
nn.Conv2DTranspose(mask_channels, kernel_size=(2, 2), strides=(2, 2),
padding=(0, 0), weight_initializer=init))
if norm_layer is not None and norm_layer is SyncBatchNorm:
self.deconv.add(norm_layer(**norm_kwargs))
else:
# this is for compatibility of older models.
self.deconv = nn.Conv2DTranspose(mask_channels, kernel_size=(2, 2), strides=(2, 2),
padding=(0, 0), weight_initializer=init)
self.mask = nn.Conv2D(len(classes), kernel_size=(1, 1), strides=(1, 1), padding=(0, 0),
weight_initializer=init)
# pylint: disable=arguments-differ
def hybrid_forward(self, F, x):
"""Forward Mask Head.
The behavior during training and inference is different.
Parameters
----------
x : mxnet.nd.NDArray or mxnet.symbol
The network input tensor of shape (B * N, fC, fH, fW).
Returns
-------
x : mxnet.nd.NDArray or mxnet.symbol
Mask prediction of shape (B, N, C, MS, MS)
"""
# (B * N, mask_channels, MS, MS)
x = F.relu(self.deconv(x))
# (B * N, C, MS, MS)
x = self.mask(x)
# (B * N, C, MS, MS) -> (B, N, C, MS, MS)
x = x.reshape((-4, self._batch_images, -1, 0, 0, 0))
return x
def reset_class(self, classes, reuse_weights=None):
"""Reset class for mask branch."""
if reuse_weights:
assert hasattr(self, 'classes'), "require old classes to reuse weights"
old_classes = getattr(self, 'classes', [])
self.classes = classes
if isinstance(reuse_weights, (dict, list)):
if isinstance(reuse_weights, dict):
# trying to replace str with indices
for k, v in reuse_weights.items():
if isinstance(v, str):
try:
v = old_classes.index(v) # raise ValueError if not found
except ValueError:
raise ValueError(
"{} not found in old class names {}".format(v, old_classes))
reuse_weights[k] = v
if isinstance(k, str):
try:
new_idx = self.classes.index(k) # raise ValueError if not found
except ValueError:
raise ValueError(
"{} not found in new class names {}".format(k, self.classes))
reuse_weights.pop(k)
reuse_weights[new_idx] = v
else:
new_map = {}
for x in reuse_weights:
try:
new_idx = self.classes.index(x)
old_idx = old_classes.index(x)
new_map[new_idx] = old_idx
except ValueError:
warnings.warn("{} not found in old: {} or new class names: {}".format(
x, old_classes, self.classes))
reuse_weights = new_map
with self.name_scope():
old_mask = self.mask
ctx = list(old_mask.params.values())[0].list_ctx()
# to avoid deferred init, number of in_channels must be defined
in_channels = list(old_mask.params.values())[0].shape[1]
init = mx.init.Xavier(rnd_type='gaussian', factor_type='out', magnitude=2)
self.mask = nn.Conv2D(len(classes), kernel_size=(1, 1), strides=(1, 1), padding=(0, 0),
weight_initializer=init, in_channels=in_channels)
self.mask.initialize(ctx=ctx)
if reuse_weights:
assert isinstance(reuse_weights, dict)
for old_params, new_params in zip(old_mask.params.values(),
self.mask.params.values()):
# slice and copy weights
old_data = old_params.data()
new_data = new_params.data()
for k, v in reuse_weights.items():
if k >= len(self.classes) or v >= len(old_classes):
warnings.warn("reuse mapping {}/{} -> {}/{} out of range".format(
k, self.classes, v, old_classes))
continue
new_data[k:k + 1] = old_data[v:v + 1]
# set data to new conv layers
new_params.set_data(new_data)
class MaskRCNN(FasterRCNN):
r"""Mask RCNN network.
Parameters
----------
features : gluon.HybridBlock
Base feature extractor before feature pooling layer.
top_features : gluon.HybridBlock
Tail feature extractor after feature pooling layer.
classes : iterable of str
Names of categories, its length is ``num_class``.
mask_channels : int, default is 256
Number of channels in mask prediction
rcnn_max_dets : int, default is 1000
Number of rois to retain in RCNN.
Upper bounded by min of rpn_test_pre_nms and rpn_test_post_nms.
rpn_test_pre_nms : int, default is 6000
Filter top proposals before NMS in testing of RPN.
rpn_test_post_nms : int, default is 1000
Return top proposal results after NMS in testing of RPN.
Will be set to rpn_test_pre_nms if it is larger than rpn_test_pre_nms.
target_roi_scale : int, default 1
Ratio of mask output roi / input roi. For model with FPN, this is typically 2.
num_fcn_convs : int, default 0
number of convolution blocks before deconv layer. For FPN network this is typically 4.
"""
def __init__(self, features, top_features, classes, mask_channels=256, rcnn_max_dets=1000,
rpn_test_pre_nms=6000, rpn_test_post_nms=1000, target_roi_scale=1, num_fcn_convs=0,
norm_layer=None, norm_kwargs=None, **kwargs):
super(MaskRCNN, self).__init__(features, top_features, classes,
rpn_test_pre_nms=rpn_test_pre_nms,
rpn_test_post_nms=rpn_test_post_nms,
additional_output=True, **kwargs)
if min(rpn_test_pre_nms, rpn_test_post_nms) < rcnn_max_dets:
rcnn_max_dets = min(rpn_test_pre_nms, rpn_test_post_nms)
self._rcnn_max_dets = rcnn_max_dets
with self.name_scope():
self.mask = Mask(self._batch_size, classes, mask_channels, num_fcn_convs=num_fcn_convs,
norm_layer=norm_layer, norm_kwargs=norm_kwargs)
roi_size = (self._roi_size[0] * target_roi_scale, self._roi_size[1] * target_roi_scale)
self._target_roi_size = roi_size
self.mask_target = MaskTargetGenerator(
self._batch_size, self._num_sample, self.num_class, self._target_roi_size)
def hybrid_forward(self, F, x, gt_box=None, gt_label=None):
"""Forward Mask RCNN network.
The behavior during training and inference is different.
Parameters
----------
x : mxnet.nd.NDArray or mxnet.symbol
The network input tensor.
gt_box : type, only required during training
The ground-truth bbox tensor with shape (1, N, 4).
gt_label : type, only required during training
The ground-truth label tensor with shape (B, 1, 4).
Returns
-------
(ids, scores, bboxes, masks)
During inference, returns final class id, confidence scores, bounding
boxes, segmentation masks.
"""
if autograd.is_training():
cls_pred, box_pred, rpn_box, samples, matches, raw_rpn_score, raw_rpn_box, anchors, \
cls_targets, box_targets, box_masks, top_feat, indices = \
super(MaskRCNN, self).hybrid_forward(F, x, gt_box, gt_label)
top_feat = F.reshape(top_feat.expand_dims(0), (self._batch_size, -1, 0, 0, 0))
top_feat = F.concat(
*[F.take(F.slice_axis(top_feat, axis=0, begin=i, end=i + 1).squeeze(),
F.slice_axis(indices, axis=0, begin=i, end=i + 1).squeeze())
for i in range(self._batch_size)], dim=0)
mask_pred = self.mask(top_feat)
return cls_pred, box_pred, mask_pred, rpn_box, samples, matches, raw_rpn_score, \
raw_rpn_box, anchors, cls_targets, box_targets, box_masks, indices
else:
batch_size = 1
ids, scores, boxes, feat = \
super(MaskRCNN, self).hybrid_forward(F, x)
# (B, N * (C - 1), 1) -> (B, N * (C - 1)) -> (B, topk)
num_rois = self._rcnn_max_dets
order = F.argsort(scores.squeeze(axis=-1), axis=1, is_ascend=False)
topk = F.slice_axis(order, axis=1, begin=0, end=num_rois)
# pick from (B, N * (C - 1), X) to (B * topk, X) -> (B, topk, X)
# roi_batch_id = F.arange(0, self._max_batch, repeat=num_rois)
roi_batch_id = F.arange(0, batch_size)
roi_batch_id = F.repeat(roi_batch_id, num_rois)
indices = F.stack(roi_batch_id, topk.reshape((-1,)), axis=0)
ids = F.gather_nd(ids, indices).reshape((-4, batch_size, num_rois, 1))
scores = F.gather_nd(scores, indices).reshape((-4, batch_size, num_rois, 1))
boxes = F.gather_nd(boxes, indices).reshape((-4, batch_size, num_rois, 4))
# create batch id and reshape for roi pooling
padded_rois = F.concat(roi_batch_id.reshape((-1, 1)), boxes.reshape((-3, 0)), dim=-1)
padded_rois = F.stop_gradient(padded_rois)
# pool to roi features
if self.num_stages > 1:
# using FPN
pooled_feat = self._pyramid_roi_feats(F, feat, padded_rois, self._roi_size,
self._strides, roi_mode=self._roi_mode)
else:
if self._roi_mode == 'pool':
pooled_feat = F.ROIPooling(
feat[0], padded_rois, self._roi_size, 1. / self._strides)
elif self._roi_mode == 'align':
pooled_feat = F.contrib.ROIAlign(
feat[0], padded_rois, self._roi_size, 1. / self._strides, sample_ratio=2)
else:
raise ValueError("Invalid roi mode: {}".format(self._roi_mode))
# run top_features again
if self.top_features is not None:
top_feat = self.top_features(pooled_feat)
else:
top_feat = pooled_feat
# (B, N, C, pooled_size * 2, pooled_size * 2)
rcnn_mask = self.mask(top_feat)
# index the B dimension (B * N,)
# batch_ids = F.arange(0, self._max_batch, repeat=num_rois)
batch_ids = F.arange(0, batch_size)
batch_ids = F.repeat(batch_ids, num_rois)
# index the N dimension (B * N,)
roi_ids = F.tile(F.arange(0, num_rois), reps=batch_size)
# index the C dimension (B * N,)
class_ids = ids.reshape((-1,))
# clip to 0 to max class
class_ids = F.clip(class_ids, 0, self.num_class)
# pick from (B, N, C, PS*2, PS*2) -> (B * N, PS*2, PS*2)
indices = F.stack(batch_ids, roi_ids, class_ids, axis=0)
masks = F.gather_nd(rcnn_mask, indices)
# (B * N, PS*2, PS*2) -> (B, N, PS*2, PS*2)
masks = masks.reshape((-4, batch_size, num_rois, 0, 0))
# output prob
masks = F.sigmoid(masks)
# ids (B, N, 1), scores (B, N, 1), boxes (B, N, 4), masks (B, N, PS*2, PS*2)
return ids, scores, boxes, masks
def reset_class(self, classes, reuse_weights=None):
"""Reset class categories and class predictors.
Parameters
----------
classes : iterable of str
The new categories. ['apple', 'orange'] for example.
reuse_weights : dict
A {new_integer : old_integer} or mapping dict or {new_name : old_name} mapping dict,
or a list of [name0, name1,...] if class names don't change.
This allows the new predictor to reuse the
previously trained weights specified.
Example
-------
>>> net = gluoncv.model_zoo.get_model('mask_rcnn_resnet50_v1b_voc', pretrained=True)
>>> # use direct name to name mapping to reuse weights
>>> net.reset_class(classes=['person'], reuse_weights={'person':'person'})
>>> # or use interger mapping, person is the first category in COCO
>>> net.reset_class(classes=['person'], reuse_weights={0:0})
>>> # you can even mix them
>>> net.reset_class(classes=['person'], reuse_weights={'person':0})
>>> # or use a list of string if class name don't change
>>> net.reset_class(classes=['person'], reuse_weights=['person'])
"""
self._clear_cached_op()
super(MaskRCNN, self).reset_class(classes=classes, reuse_weights=reuse_weights)
self.mask.reset_class(classes=classes, reuse_weights=reuse_weights)
self.mask_target = MaskTargetGenerator(
self._batch_size, self._num_sample, self.num_class, self._target_roi_size)
def get_mask_rcnn(name, dataset, pretrained=False, ctx=mx.cpu(),
root=os.path.join('~', '.mxnet', 'models'), **kwargs):
r"""Utility function to return mask rcnn networks.
Parameters
----------
name : str
Model name.
dataset : str
The name of dataset.
pretrained : bool or str
Boolean value controls whether to load the default pretrained weights for model.
String value represents the hashtag for a certain version of pretrained weights.
ctx : mxnet.Context
Context such as mx.cpu(), mx.gpu(0).
root : str
Model weights storing path.
Returns
-------
mxnet.gluon.HybridBlock
The Mask RCNN network.
"""
net = MaskRCNN(minimal_opset=pretrained, **kwargs)
if pretrained:
from ....model_zoo.model_store import get_model_file
full_name = '_'.join(('mask_rcnn', name, dataset))
net.load_parameters(get_model_file(full_name, tag=pretrained, root=root), ctx=ctx,
ignore_extra=True, allow_missing=True)
else:
for v in net.collect_params().values():
try:
v.reset_ctx(ctx)
except ValueError:
pass
return net
def custom_mask_rcnn_fpn(classes, transfer=None, dataset='custom', pretrained_base=True,
base_network_name='resnet18_v1b', norm_layer=nn.BatchNorm,
norm_kwargs=None, sym_norm_layer=None, sym_norm_kwargs=None,
num_fpn_filters=256, num_box_head_conv=4, num_box_head_conv_filters=256,
num_box_head_dense_filters=1024, **kwargs):
r"""Mask RCNN model with resnet base network and FPN on custom dataset.
Parameters
----------
classes : iterable of str
Names of custom foreground classes. `len(classes)` is the number of foreground classes.
transfer : str or None
Dataset from witch to transfer from. If not `None`, will try to reuse pre-trained weights
from faster RCNN networks trained on other dataset, specified by the parameter.
dataset : str, default 'custom'
Dataset name attached to the network name
pretrained_base : bool or str
Boolean value controls whether to load the default pretrained weights for model.
String value represents the hashtag for a certain version of pretrained weights.
base_network_name : str, default 'resnet18_v1b'
base network for mask RCNN. Currently support: 'resnet18_v1b', 'resnet50_v1b',
and 'resnet101_v1d'
norm_layer : nn.HybridBlock, default nn.BatchNorm
Gluon normalization layer to use. Default is frozen batch normalization layer.
norm_kwargs : dict
Keyword arguments for gluon normalization layer
sym_norm_layer : nn.SymbolBlock, default `None`
Symbol normalization layer to use in FPN. This is due to FPN being implemented using
SymbolBlock. Default is `None`, meaning no normalization layer will be used in FPN.
sym_norm_kwargs : dict
Keyword arguments for symbol normalization layer used in FPN.
num_fpn_filters : int, default 256
Number of filters for FPN output layers.
num_box_head_conv : int, default 4
Number of convolution layers to use in box head if batch normalization is not frozen.
num_box_head_conv_filters : int, default 256
Number of filters for convolution layers in box head.
Only applicable if batch normalization is not frozen.
num_box_head_dense_filters : int, default 1024
Number of hidden units for the last fully connected layer in box head.
ctx : Context, default CPU
The context in which to load the pretrained weights.
root : str, default '~/.mxnet/models'
Location for keeping the model parameters.
Returns
-------
mxnet.gluon.HybridBlock
Hybrid faster RCNN network.
"""
use_global_stats = norm_layer is nn.BatchNorm
train_patterns = '|'.join(['.*dense', '.*rpn', '.*down(2|3|4)_conv', '.*layers(2|3|4)_conv',
'.*mask', 'P']) if use_global_stats \
else '(?!.*moving)' # excluding symbol bn moving mean and var'''
if transfer is None:
features, top_features, box_features = \
custom_rcnn_fpn(pretrained_base, base_network_name, norm_layer, norm_kwargs,
sym_norm_layer, sym_norm_kwargs, num_fpn_filters, num_box_head_conv,
num_box_head_conv_filters, num_box_head_dense_filters)
return get_mask_rcnn(
name='fpn_' + base_network_name, dataset=dataset, features=features,
top_features=top_features, classes=classes, box_features=box_features,
train_patterns=train_patterns, **kwargs)
else:
from ....model_zoo import get_model
module_list = ['fpn']
if norm_layer is not None:
module_list.append(norm_layer)
net = get_model('_'.join(['mask_rcnn'] + module_list + [base_network_name, str(transfer)]),
pretrained=True, **kwargs)
reuse_classes = [x for x in classes if x in net.classes]
net.reset_class(classes, reuse_weights=reuse_classes)
return net