-
-
Notifications
You must be signed in to change notification settings - Fork 8.7k
/
Copy pathpartition_builder.h
386 lines (341 loc) · 14.3 KB
/
partition_builder.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
/**
* Copyright 2021-2023 by Contributors
* \file row_set.h
* \brief Quick Utility to compute subset of rows
* \author Philip Cho, Tianqi Chen
*/
#ifndef XGBOOST_COMMON_PARTITION_BUILDER_H_
#define XGBOOST_COMMON_PARTITION_BUILDER_H_
#include <xgboost/data.h>
#include <algorithm>
#include <cstddef> // for size_t
#include <limits>
#include <memory>
#include <utility>
#include <vector>
#include "../tree/hist/expand_entry.h"
#include "categorical.h"
#include "column_matrix.h"
#include "xgboost/context.h"
#include "xgboost/tree_model.h"
namespace xgboost::common {
// The builder is required for samples partition to left and rights children for set of nodes
// Responsible for:
// 1) Effective memory allocation for intermediate results for multi-thread work
// 2) Merging partial results produced by threads into original row set (row_set_collection_)
// BlockSize is template to enable memory alignment easily with C++11 'alignas()' feature
template<size_t BlockSize>
class PartitionBuilder {
using BitVector = RBitField8;
public:
template<typename Func>
void Init(const size_t n_tasks, size_t n_nodes, Func funcNTask) {
left_right_nodes_sizes_.resize(n_nodes);
blocks_offsets_.resize(n_nodes+1);
blocks_offsets_[0] = 0;
for (size_t i = 1; i < n_nodes+1; ++i) {
blocks_offsets_[i] = blocks_offsets_[i-1] + funcNTask(i-1);
}
if (n_tasks > max_n_tasks_) {
mem_blocks_.resize(n_tasks);
max_n_tasks_ = n_tasks;
}
}
// split row indexes (rid_span) to 2 parts (left_part, right_part) depending
// on comparison of indexes values (idx_span) and split point (split_cond)
// Handle dense columns
// Analog of std::stable_partition, but in no-inplace manner
template <bool default_left, bool any_missing, typename ColumnType, typename Predicate>
inline std::pair<size_t, size_t> PartitionKernel(ColumnType* p_column,
common::Span<const size_t> row_indices,
common::Span<size_t> left_part,
common::Span<size_t> right_part,
size_t base_rowid, Predicate&& pred) {
auto& column = *p_column;
size_t* p_left_part = left_part.data();
size_t* p_right_part = right_part.data();
size_t nleft_elems = 0;
size_t nright_elems = 0;
auto p_row_indices = row_indices.data();
auto n_samples = row_indices.size();
for (size_t i = 0; i < n_samples; ++i) {
auto rid = p_row_indices[i];
const int32_t bin_id = column[rid - base_rowid];
if (any_missing && bin_id == ColumnType::kMissingId) {
if (default_left) {
p_left_part[nleft_elems++] = rid;
} else {
p_right_part[nright_elems++] = rid;
}
} else {
if (pred(rid, bin_id)) {
p_left_part[nleft_elems++] = rid;
} else {
p_right_part[nright_elems++] = rid;
}
}
}
return {nleft_elems, nright_elems};
}
template <typename Pred>
inline std::pair<size_t, size_t> PartitionRangeKernel(common::Span<const size_t> ridx,
common::Span<size_t> left_part,
common::Span<size_t> right_part,
Pred pred) {
size_t* p_left_part = left_part.data();
size_t* p_right_part = right_part.data();
size_t nleft_elems = 0;
size_t nright_elems = 0;
for (auto row_id : ridx) {
if (pred(row_id)) {
p_left_part[nleft_elems++] = row_id;
} else {
p_right_part[nright_elems++] = row_id;
}
}
return {nleft_elems, nright_elems};
}
template <typename BinIdxType, bool any_missing, bool any_cat, typename ExpandEntry>
void Partition(const size_t node_in_set, std::vector<ExpandEntry> const& nodes,
const common::Range1d range, const bst_bin_t split_cond,
GHistIndexMatrix const& gmat, const common::ColumnMatrix& column_matrix,
const RegTree& tree, const size_t* rid) {
common::Span<const size_t> rid_span(rid + range.begin(), rid + range.end());
common::Span<size_t> left = GetLeftBuffer(node_in_set, range.begin(), range.end());
common::Span<size_t> right = GetRightBuffer(node_in_set, range.begin(), range.end());
std::size_t nid = nodes[node_in_set].nid;
bst_feature_t fid = tree.SplitIndex(nid);
bool default_left = tree.DefaultLeft(nid);
bool is_cat = tree.GetSplitTypes()[nid] == FeatureType::kCategorical;
auto node_cats = tree.NodeCats(nid);
auto const& cut_values = gmat.cut.Values();
auto pred_hist = [&](auto ridx, auto bin_id) {
if (any_cat && is_cat) {
auto gidx = gmat.GetGindex(ridx, fid);
bool go_left = default_left;
if (gidx > -1) {
go_left = Decision(node_cats, cut_values[gidx]);
}
return go_left;
} else {
return bin_id <= split_cond;
}
};
auto pred_approx = [&](auto ridx) {
auto gidx = gmat.GetGindex(ridx, fid);
bool go_left = default_left;
if (gidx > -1) {
if (is_cat) {
go_left = Decision(node_cats, cut_values[gidx]);
} else {
go_left = cut_values[gidx] <= nodes[node_in_set].split.split_value;
}
}
return go_left;
};
std::pair<size_t, size_t> child_nodes_sizes;
if (!column_matrix.IsInitialized()) {
child_nodes_sizes = PartitionRangeKernel(rid_span, left, right, pred_approx);
} else {
if (column_matrix.GetColumnType(fid) == xgboost::common::kDenseColumn) {
auto column = column_matrix.DenseColumn<BinIdxType, any_missing>(fid);
if (default_left) {
child_nodes_sizes = PartitionKernel<true, any_missing>(&column, rid_span, left, right,
gmat.base_rowid, pred_hist);
} else {
child_nodes_sizes = PartitionKernel<false, any_missing>(&column, rid_span, left, right,
gmat.base_rowid, pred_hist);
}
} else {
CHECK_EQ(any_missing, true);
auto column =
column_matrix.SparseColumn<BinIdxType>(fid, rid_span.front() - gmat.base_rowid);
if (default_left) {
child_nodes_sizes = PartitionKernel<true, any_missing>(&column, rid_span, left, right,
gmat.base_rowid, pred_hist);
} else {
child_nodes_sizes = PartitionKernel<false, any_missing>(&column, rid_span, left, right,
gmat.base_rowid, pred_hist);
}
}
}
const size_t n_left = child_nodes_sizes.first;
const size_t n_right = child_nodes_sizes.second;
SetNLeftElems(node_in_set, range.begin(), n_left);
SetNRightElems(node_in_set, range.begin(), n_right);
}
/**
* @brief When data is split by column, we don't have all the features locally on the current
* worker, so we go through all the rows and mark the bit vectors on whether the decision is made
* to go right, or if the feature value used for the split is missing.
*/
template <typename ExpandEntry>
void MaskRows(const size_t node_in_set, std::vector<ExpandEntry> const& nodes,
const common::Range1d range, GHistIndexMatrix const& gmat,
const common::ColumnMatrix& column_matrix, const RegTree& tree, const size_t* rid,
BitVector* decision_bits, BitVector* missing_bits) {
common::Span<const size_t> rid_span(rid + range.begin(), rid + range.end());
std::size_t nid = nodes[node_in_set].nid;
bst_feature_t fid = tree[nid].SplitIndex();
bool is_cat = tree.GetSplitTypes()[nid] == FeatureType::kCategorical;
auto node_cats = tree.NodeCats(nid);
auto const& cut_values = gmat.cut.Values();
if (!column_matrix.IsInitialized()) {
for (auto row_id : rid_span) {
auto gidx = gmat.GetGindex(row_id, fid);
if (gidx > -1) {
bool go_left = false;
if (is_cat) {
go_left = Decision(node_cats, cut_values[gidx]);
} else {
go_left = cut_values[gidx] <= nodes[node_in_set].split.split_value;
}
if (go_left) {
decision_bits->Set(row_id - gmat.base_rowid);
}
} else {
missing_bits->Set(row_id - gmat.base_rowid);
}
}
} else {
LOG(FATAL) << "Column data split is only supported for the `approx` tree method";
}
}
/**
* @brief Once we've aggregated the decision and missing bits from all the workers, we can then
* use them to partition the rows accordingly.
*/
template <typename ExpandEntry>
void PartitionByMask(const size_t node_in_set, std::vector<ExpandEntry> const& nodes,
const common::Range1d range, GHistIndexMatrix const& gmat,
const common::ColumnMatrix& column_matrix, const RegTree& tree,
const size_t* rid, BitVector const& decision_bits,
BitVector const& missing_bits) {
common::Span<const size_t> rid_span(rid + range.begin(), rid + range.end());
common::Span<size_t> left = GetLeftBuffer(node_in_set, range.begin(), range.end());
common::Span<size_t> right = GetRightBuffer(node_in_set, range.begin(), range.end());
std::size_t nid = nodes[node_in_set].nid;
bool default_left = tree[nid].DefaultLeft();
auto pred_approx = [&](auto ridx) {
bool go_left = default_left;
bool is_missing = missing_bits.Check(ridx - gmat.base_rowid);
if (!is_missing) {
go_left = decision_bits.Check(ridx - gmat.base_rowid);
}
return go_left;
};
std::pair<size_t, size_t> child_nodes_sizes;
if (!column_matrix.IsInitialized()) {
child_nodes_sizes = PartitionRangeKernel(rid_span, left, right, pred_approx);
} else {
LOG(FATAL) << "Column data split is only supported for the `approx` tree method";
}
const size_t n_left = child_nodes_sizes.first;
const size_t n_right = child_nodes_sizes.second;
SetNLeftElems(node_in_set, range.begin(), n_left);
SetNRightElems(node_in_set, range.begin(), n_right);
}
// allocate thread local memory, should be called for each specific task
void AllocateForTask(size_t id) {
if (mem_blocks_[id].get() == nullptr) {
BlockInfo* local_block_ptr = new BlockInfo;
CHECK_NE(local_block_ptr, (BlockInfo*)nullptr);
mem_blocks_[id].reset(local_block_ptr);
}
}
common::Span<size_t> GetLeftBuffer(int nid, size_t begin, size_t end) {
const size_t task_idx = GetTaskIdx(nid, begin);
return { mem_blocks_.at(task_idx)->Left(), end - begin };
}
common::Span<size_t> GetRightBuffer(int nid, size_t begin, size_t end) {
const size_t task_idx = GetTaskIdx(nid, begin);
return { mem_blocks_.at(task_idx)->Right(), end - begin };
}
void SetNLeftElems(int nid, size_t begin, size_t n_left) {
size_t task_idx = GetTaskIdx(nid, begin);
mem_blocks_.at(task_idx)->n_left = n_left;
}
void SetNRightElems(int nid, size_t begin, size_t n_right) {
size_t task_idx = GetTaskIdx(nid, begin);
mem_blocks_.at(task_idx)->n_right = n_right;
}
[[nodiscard]] std::size_t GetNLeftElems(int nid) const {
return left_right_nodes_sizes_[nid].first;
}
[[nodiscard]] std::size_t GetNRightElems(int nid) const {
return left_right_nodes_sizes_[nid].second;
}
// Each thread has partial results for some set of tree-nodes
// The function decides order of merging partial results into final row set
void CalculateRowOffsets() {
for (size_t i = 0; i < blocks_offsets_.size()-1; ++i) {
size_t n_left = 0;
for (size_t j = blocks_offsets_[i]; j < blocks_offsets_[i+1]; ++j) {
mem_blocks_[j]->n_offset_left = n_left;
n_left += mem_blocks_[j]->n_left;
}
size_t n_right = 0;
for (size_t j = blocks_offsets_[i]; j < blocks_offsets_[i + 1]; ++j) {
mem_blocks_[j]->n_offset_right = n_left + n_right;
n_right += mem_blocks_[j]->n_right;
}
left_right_nodes_sizes_[i] = {n_left, n_right};
}
}
void MergeToArray(int nid, size_t begin, size_t* rows_indexes) {
size_t task_idx = GetTaskIdx(nid, begin);
size_t* left_result = rows_indexes + mem_blocks_[task_idx]->n_offset_left;
size_t* right_result = rows_indexes + mem_blocks_[task_idx]->n_offset_right;
const size_t* left = mem_blocks_[task_idx]->Left();
const size_t* right = mem_blocks_[task_idx]->Right();
std::copy_n(left, mem_blocks_[task_idx]->n_left, left_result);
std::copy_n(right, mem_blocks_[task_idx]->n_right, right_result);
}
size_t GetTaskIdx(int nid, size_t begin) {
return blocks_offsets_[nid] + begin / BlockSize;
}
// Copy row partitions into global cache for reuse in objective
template <typename Sampledp>
void LeafPartition(Context const* ctx, RegTree const& tree, RowSetCollection const& row_set,
std::vector<bst_node_t>* p_position, Sampledp sampledp) const {
auto& h_pos = *p_position;
h_pos.resize(row_set.Data()->size(), std::numeric_limits<bst_node_t>::max());
auto p_begin = row_set.Data()->data();
ParallelFor(row_set.Size(), ctx->Threads(), [&](size_t i) {
auto const& node = row_set[i];
if (node.node_id < 0) {
return;
}
CHECK(tree.IsLeaf(node.node_id));
if (node.begin) { // guard for empty node.
size_t ptr_offset = node.end - p_begin;
CHECK_LE(ptr_offset, row_set.Data()->size()) << node.node_id;
for (auto idx = node.begin; idx != node.end; ++idx) {
h_pos[*idx] = sampledp(*idx) ? ~node.node_id : node.node_id;
}
}
});
}
protected:
struct BlockInfo{
size_t n_left;
size_t n_right;
size_t n_offset_left;
size_t n_offset_right;
size_t* Left() {
return &left_data_[0];
}
size_t* Right() {
return &right_data_[0];
}
private:
size_t left_data_[BlockSize];
size_t right_data_[BlockSize];
};
std::vector<std::pair<size_t, size_t>> left_right_nodes_sizes_;
std::vector<size_t> blocks_offsets_;
std::vector<std::shared_ptr<BlockInfo>> mem_blocks_;
size_t max_n_tasks_ = 0;
};
} // namespace xgboost::common
#endif // XGBOOST_COMMON_PARTITION_BUILDER_H_