forked from psaris/funq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathem.q
112 lines (102 loc) · 4.25 KB
/
em.q
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
\c 40 100
\l funq.q
/ expectation maximization (EM)
/ binomial example
/ http://www.nature.com/nbt/journal/v26/n8/full/nbt1406.html
n:10
x:"f"$sum each (1000110101b;1111011111b;1011111011b;1010001100b;0111011101b)
THETA:.6 .5 / initial coefficients
lf:.ml.binl[n] / likelihood function
mf:.ml.wbinmle[n;0] / parameter maximization function
phi:2#1f%2f / coins are picked with equal probability
.ml.em[1b;lf;mf;x] pT:(phi;flip enlist THETA)
.ml.em[1b;lf;mf;x] over pT / call until convergence
/ which flips came from which THETA? pick maximum log likelkhood
pT:.ml.em[1b;lf;mf;x] over pT
.util.assert[1 0 0 1 0] .ml.f2nd[.ml.imax] .ml.likelihood[0b;lf;x] . pT
.util.assert[1 0 0 1 0] .ml.f2nd[.ml.imax] .ml.likelihood[1b;.ml.binll[n];x] . pT
/ multinomial example
n:100000
k:30
X:flip raze .ml.rmultinom[1;k] each (6#1f%6;.5,5#.1;(2#.1),4#.2)y:n?3
lf:.ml.mmml
mf:.ml.wmmmmle[k;1e-8]
mu:.ml.prb each flip 3?/:X
phi:3#1f%3
.ml.em[1b;lf;mf;X] pT:(phi;flip enlist mu)
show pT:.ml.em[0b;lf;mf;X] over pT
p:.ml.f2nd[.ml.imax] .ml.likelihood[1b;.ml.mmmll;X] . pT
show m:.ml.mode each y group p
avg y=m p
-1"what does the confusion matrix look like?";
show .util.totals[`TOTAL] .ml.cm[y;m p]
/ gaussian mixtures
/ http://mccormickml.com/2014/08/04/gaussian-mixture-models-tutorial-and-matlab-code/
/ 1d gauss
mu0:10 20 30 / distribution's mu
s20:s0*s0:1 3 2 / distribution's variance
m0:100 200 150 / number of points per distribution
X:raze X0:mu0+s0*(.ml.bm ?[;1f]@) each m0 / build dataset
show .util.plt raze each (X0;0f*X0),'(X0;.ml.gaussl'[mu0;s20;X0]) / plot 1d data and guassian curves
k:count mu0
phi:k#1f%k; / guess that distributions occur with equal frequency
mu:neg[k]?X; / pick k random points as centers
s2:k#var X; / use the whole datasets variance
lf:.ml.gaussl / likelihood function
mf:.ml.wgaussmle / maximum likelihood estimator function
pT:.ml.em[1b;lf;mf;X] over (phi;flip (mu;s2)) / returns best guess for (phi;mu;s)
group .ml.f2nd[.ml.imax] .ml.likelihood[1b;.ml.gaussll;X] . pT
/ let's use the iris data for multivariate gauss
\l iris.q
`X`y set' iris`X`y;
k:count distinct y / 3 clusters
phi:k#1f%k / equal prior probability
mu:X@\:/:neg[k]?count y / pick k random points for mu
SIGMA:k#enlist X cov\:/: X / sample covariance
lf:.ml.gaussmvl
mf:.ml.wgaussmvmle
pT:.ml.em[1b;lf;mf;X] over (phi;flip (mu;SIGMA))
/ how well did it cluster the data?
p:.ml.f2nd[.ml.imax] .ml.likelihood[1b;.ml.gaussmvll;X] . pT
show m:.ml.mode each y group p
avg y=m p
-1"what does the confusion matrix look like?";
show .util.totals[`TOTAL] .ml.cm[y;m p]
plt:.util.plot[60;30;".@"]
-1 value .util.plt .ml.append[0;X 0 2],'.ml.append[1] flip[pT[1;;0]] 0 2;
-1"let's cluster hand written numbers into groups";
-1"assuming each pixel of a black/white image is a bernoulli distribution,";
-1"we can model each picture as a bernoulli mixture model";
\l mnist.q
`X`y set' mnist`X`y;
-1"shrinking training set";
X:1000#'X;y:1000#y;
-1"convert the grayscale image into black/white";
X>:128
plt:value .util.plot[28;14;.util.c10] .util.hmap flip 28 cut
k:10
-1"let's use ",string[k]," clusters";
-1"we first initialize phi to be equal weight across all clusters";
phi:k#1f%k / equal prior probability
-1"then we use the hamming distance to pick different prototypes";
mu:flip last k .ml.kpp[.ml.hdist;X]/ () / pick k distant proto
-1"and finally we add a bit of noise without 'pathological' extreme values";
mu:.5*mu+.15+count[X]?/:k#.7 / randomly disturb around .5
-1"display a few initial prototypes";
-1 (,'/) plt each 4#mu;
lf:.ml.bmml[1]
mf:.ml.wbmmmle[1;1e-8]
pT:(phi;flip enlist mu)
-1"0-values in phi or mu will create null values.";
-1"to prevent this, we need to use dirichlet smoothing";
pT:.ml.em[1b;lf;mf;X] pT
-1"after the first em round, the numbers are prototypes are much clearer";
-1 (,'/) (plt first @) each pT 1;
-1"let's run 10 more em steps";
pT:10 .ml.em[1b;lf;mf;X]/ pT
-1"grouping the data and finding the mode identifies the clusters";
p:.ml.f2nd[.ml.imax] .ml.likelihood[1b;.ml.bmmll[1];X] . pT
show m:.ml.mode each y group p
avg y=m p
-1"what does the confusion matrix look like?";
show .util.totals[`TOTAL] .ml.cm[y;m p]