Skip to content
This repository has been archived by the owner on Mar 11, 2020. It is now read-only.

See https://github.com/containerd/containerd for upstream containerd

License

Apache-2.0, CC-BY-SA-4.0 licenses found

Licenses found

Apache-2.0
LICENSE.code
CC-BY-SA-4.0
LICENSE.docs
Notifications You must be signed in to change notification settings

docker-archive/containerd

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

banner

Build Status FOSSA Status

containerd is an industry-standard container runtime with an emphasis on simplicity, robustness and portability. It is available as a daemon for Linux and Windows, which can manage the complete container lifecycle of its host system: image transfer and storage, container execution and supervision, low-level storage and network attachments, etc..

containerd is designed to be embedded into a larger system, rather than being used directly by developers or end-users.

State of the Project

containerd currently has two active branches. There is a v0.2.x branch for the current release of containerd that is being consumed by Docker and others and the master branch is the development branch for the 1.0 roadmap and feature set. Any PR or issue that is intended for the current v0.2.x release should be tagged with the same v0.2.x tag.

Communication

For async communication and long running discussions please use issues and pull requests on the github repo. This will be the best place to discuss design and implementation.

For sync communication we have a community slack with a #containerd channel that everyone is welcome to join and chat about development.

Slack: https://dockr.ly/community

Developer Quick-Start

To build the daemon and ctr simple test client, the following build system dependencies are required:

  • Go 1.8.x or above (requires 1.8 due to use of golang plugin(s))
  • Protoc 3.x compiler and headers (download at the Google protobuf releases page)
  • Btrfs headers and libraries for your distribution. Note that building the btrfs driver can be disabled via build tag removing this dependency.

For proper results, install the protoc release into /usr/local on your build system. For example, the following commands will download and install the 3.1.0 release for a 64-bit Linux host:

$ wget -c https://github.com/google/protobuf/releases/download/v3.1.0/protoc-3.1.0-linux-x86_64.zip
$ sudo unzip protoc-3.1.0-linux-x86_64.zip -d /usr/local

With the required dependencies installed, the Makefile target named binaries will compile the ctr and containerd binaries and place them in the bin/ directory. Using sudo make install will place the binaries in /usr/local/bin. When making any changes to the gRPC API, make generate will use the installed protoc compiler to regenerate the API generated code packages.

Note: A build tag is currently available to disable building the btrfs snapshot driver. Adding BUILDTAGS=no_btrfs to your environment before calling the binaries Makefile target will disable the btrfs driver within the containerd Go build.

Vendoring of external imports uses the vndr tool which uses a simple config file, vendor.conf, to provide the URL and version or hash details for each vendored import. After modifying vendor.conf run the vndr tool to update the vendor/ directory contents. Combining the vendor.conf update with the changeset in vendor/ after running vndr should become a single commit for a PR which relies on vendored updates.

Please refer to RUNC.md for the currently supported version of runc that is used by containerd.

Features

  • OCI Image Spec support
  • OCI Runtime Spec support
  • Image push and pull support
  • Container runtime and lifecycle support
  • Management of network namespaces containers to join existing namespaces
  • Multi-tenant supported with CAS storage for global images

Scope and Principles

Having a clearly defined scope of a project is important for ensuring consistency and focus. These following criteria will be used when reviewing pull requests, features, and changes for the project before being accepted.

Components

Components should not have tight dependencies on each other so that they are able to be used independently. The APIs for images and containers should be designed in a way that when used together the components have a natural flow but still be useful independently.

An example for this design can be seen with the overlay filesystems and the container execution layer. The execution layer and overlay filesystems can be used independently but if you were to use both, they share a common Mount struct that the filesystems produce and the execution layer consumes.

Primitives

containerd should expose primitives to solve problems instead of building high level abstractions in the API. A common example of this is how build would be implemented. Instead of having a build API in containerd we should expose the lower level primitives that allow things required in build to work. Breaking up the filesystem APIs to allow snapshots, copy functionality, and mounts allow people implementing build at the higher levels more flexibility.

Extensibility and Defaults

For the various components in containerd there should be defined extension points where implementations can be swapped for alternatives. The best example of this is that containerd will use runc from OCI as the default runtime in the execution layer but other runtimes conforming to the OCI Runtime specification they can be easily added to containerd.

containerd will come with a default implementation for the various components. These defaults will be chosen by the maintainers of the project and should not change unless better tech for that component comes out. Additional implementations will not be accepted into the core repository and should be developed in a separate repository not maintained by the containerd maintainers.

Releases

containerd will be released with a 1.0 when feature complete and this version will be supported for 1 year with security and bug fixes applied and released.

The upgrade path for containerd is that the 0.0.x patch releases are always backward compatible with its major and minor version. Minor (0.x.0) version will always be compatible with the previous minor release. i.e. 1.2.0 is backwards compatible with 1.1.0 and 1.1.0 is compatible with 1.0.0. There is no compatibility guarantees with upgrades from two minor releases. i.e. 1.0.0 to 1.2.0.

There are not backwards compatibility guarantees with upgrades to major versions. i.e 1.0.0 to 2.0.0. Each major version will be supported for 1 year with bug fixes and security patches.

Scope

The following table specifies the various components of containerd and general features of container runtimes. The table specifies whether or not the feature/component is in or out of scope.

Name Description In/Out Reason
execution Provide an extensible execution layer for executing a container in Create,start, stop pause, resume exec, signal, delete
cow filesystem Built in functionality for overlay, aufs, and other copy on write filesystems for containers in
distribution Having the ability to push and pull images as well as operations on images as a first class API object in containerd will fully support the management and retrieval of images
metrics container-level metrics, cgroup stats, and OOM events in
networking creation and management of network interfaces out Networking will be handled and provided to containerd via higher level systems.
build Building images as a first class API out Build is a higher level tooling feature and can be implemented in many different ways on top of containerd
volumes Volume management for external data out The API supports mounts, binds, etc where all volumes type systems can be built on top of containerd.
logging Persisting container logs out Logging can be build on top of containerd because the container’s STDIO will be provided to the clients and they can persist any way they see fit. There is no io copying of container STDIO in containerd.

containerd is scoped to a single host and makes assumptions based on that fact. It can be used to build things like a node agent that launches containers but does not have any concepts of a distributed system.

containerd is designed to be embedded into a larger system, hence it only includes a barebone CLI (ctr) specifically for development and debugging purpose, with no mandate to be human-friendly, and no guarantee of interface stability over time.

Also things like service discovery are out of scope even though networking is in scope. containerd should provide the primitives to create, add, remove, or manage network interfaces and network namespaces for a container but IP allocation, discovery, and DNS should be handled at higher layers.

How is the scope changed?

The scope of this project is a whitelist. If it's not mentioned as being in scope, it is out of scope.
For the scope of this project to change it requires a 100% vote from all maintainers of the project.

Development reports.

Weekly summary on the progress and what is being worked on. https://github.com/containerd/containerd/tree/master/reports

Copyright and license

Copyright © 2016 Docker, Inc. All rights reserved, except as follows. Code is released under the Apache 2.0 license. The README.md file, and files in the "docs" folder are licensed under the Creative Commons Attribution 4.0 International License under the terms and conditions set forth in the file "LICENSE.docs". You may obtain a duplicate copy of the same license, titled CC-BY-SA-4.0, at http://creativecommons.org/licenses/by/4.0/.

About

See https://github.com/containerd/containerd for upstream containerd

Resources

License

Apache-2.0, CC-BY-SA-4.0 licenses found

Licenses found

Apache-2.0
LICENSE.code
CC-BY-SA-4.0
LICENSE.docs

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Go 94.4%
  • Protocol Buffer 4.6%
  • Makefile 1.0%