forked from yhenon/pytorch-retinanet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
visualize_single_image.py
132 lines (96 loc) · 4.21 KB
/
visualize_single_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import torch
import numpy as np
import time
import os
import csv
import cv2
import argparse
def load_classes(csv_reader):
result = {}
for line, row in enumerate(csv_reader):
line += 1
try:
class_name, class_id = row
except ValueError:
raise(ValueError('line {}: format should be \'class_name,class_id\''.format(line)))
class_id = int(class_id)
if class_name in result:
raise ValueError('line {}: duplicate class name: \'{}\''.format(line, class_name))
result[class_name] = class_id
return result
# Draws a caption above the box in an image
def draw_caption(image, box, caption):
b = np.array(box).astype(int)
cv2.putText(image, caption, (b[0], b[1] - 10), cv2.FONT_HERSHEY_PLAIN, 1, (0, 0, 0), 2)
cv2.putText(image, caption, (b[0], b[1] - 10), cv2.FONT_HERSHEY_PLAIN, 1, (255, 255, 255), 1)
def detect_image(image_path, model_path, class_list):
with open(class_list, 'r') as f:
classes = load_classes(csv.reader(f, delimiter=','))
labels = {}
for key, value in classes.items():
labels[value] = key
model = torch.load(model_path)
if torch.cuda.is_available():
model = model.cuda()
model.training = False
model.eval()
for img_name in os.listdir(image_path):
image = cv2.imread(os.path.join(image_path, img_name))
if image is None:
continue
image_orig = image.copy()
rows, cols, cns = image.shape
smallest_side = min(rows, cols)
# rescale the image so the smallest side is min_side
min_side = 608
max_side = 1024
scale = min_side / smallest_side
# check if the largest side is now greater than max_side, which can happen
# when images have a large aspect ratio
largest_side = max(rows, cols)
if largest_side * scale > max_side:
scale = max_side / largest_side
# resize the image with the computed scale
image = cv2.resize(image, (int(round(cols * scale)), int(round((rows * scale)))))
rows, cols, cns = image.shape
pad_w = 32 - rows % 32
pad_h = 32 - cols % 32
new_image = np.zeros((rows + pad_w, cols + pad_h, cns)).astype(np.float32)
new_image[:rows, :cols, :] = image.astype(np.float32)
image = new_image.astype(np.float32)
image /= 255
image -= [0.485, 0.456, 0.406]
image /= [0.229, 0.224, 0.225]
image = np.expand_dims(image, 0)
image = np.transpose(image, (0, 3, 1, 2))
with torch.no_grad():
image = torch.from_numpy(image)
if torch.cuda.is_available():
image = image.cuda()
st = time.time()
print(image.shape, image_orig.shape, scale)
scores, classification, transformed_anchors = model(image.cuda().float())
print('Elapsed time: {}'.format(time.time() - st))
idxs = np.where(scores.cpu() > 0.5)
for j in range(idxs[0].shape[0]):
bbox = transformed_anchors[idxs[0][j], :]
x1 = int(bbox[0] / scale)
y1 = int(bbox[1] / scale)
x2 = int(bbox[2] / scale)
y2 = int(bbox[3] / scale)
label_name = labels[int(classification[idxs[0][j]])]
print(bbox, classification.shape)
score = scores[j]
caption = '{} {:.3f}'.format(label_name, score)
# draw_caption(img, (x1, y1, x2, y2), label_name)
draw_caption(image_orig, (x1, y1, x2, y2), caption)
cv2.rectangle(image_orig, (x1, y1), (x2, y2), color=(0, 0, 255), thickness=2)
cv2.imshow('detections', image_orig)
cv2.waitKey(0)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Simple script for visualizing result of training.')
parser.add_argument('--image_dir', help='Path to directory containing images')
parser.add_argument('--model_path', help='Path to model')
parser.add_argument('--class_list', help='Path to CSV file listing class names (see README)')
parser = parser.parse_args()
detect_image(parser.image_dir, parser.model_path, parser.class_list)