-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval_humanml.py
426 lines (378 loc) · 15.7 KB
/
eval_humanml.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
import wandb
from utils.fixseed import fixseed
from datetime import datetime
from data_loaders.humanml.motion_loaders.model_motion_loaders import (
get_mdm_loader,
) # get_motion_loader
from data_loaders.humanml.utils.metrics import *
from data_loaders.humanml.networks.evaluator_wrapper import EvaluatorMDMWrapper
from collections import OrderedDict
from data_loaders.humanml.scripts.motion_process import *
from data_loaders.humanml.utils.utils import *
from utils.model_util import (
create_model_and_diffusion,
create_model_and_flow,
load_model_wo_clip,
)
from diffusion import logger
from utils import dist_util
from data_loaders.get_data import get_dataset_loader
from model.cfg_sampler import ClassifierFreeSampleModel
torch.multiprocessing.set_sharing_strategy("file_system")
from tqdm import tqdm
import hydra
@hydra.main(config_path="config", config_name="config_base", version_base=None)
def main(cfg):
if cfg.is_debug:
if False:
cfg.dataset = "kit"
cfg.dynamic = "flow"
cfg.model.text_emebed = "t5-large"
cfg.guidance_param = 2.5
cfg.model_path = "./outputs/kit_enc_t5large_unflatten_4gpu_occupy/12-09-2023/09-21-46/model000200056.pt"
cfg.eval_mode = "mm_short"
elif False:
cfg.dataset = "kit"
cfg.dynamic = "diffusion"
cfg.guidance_param = 2.5
cfg.model_path = "./pretrained/kit_trans_enc_512/model000400000.pt"
cfg.eval_mode = "mm_short"
print("debug mode oppen")
fixseed(cfg.seed)
cfg.batch_size = 32 # This must be 32! Don't change it! otherwise it will cause a bug in R precision calc!
name = os.path.basename(os.path.dirname(cfg.model_path))
niter = os.path.basename(cfg.model_path).replace("model", "").replace(".pt", "")
log_file_name = os.path.join(
os.path.dirname(cfg.model_path), "eval_humanml_{}_{}".format(name, niter)
)
if cfg.guidance_param != 1.0:
log_file_name += f"_gscale{cfg.guidance_param}"
log_file_name += f"_{cfg.eval_mode}"
if cfg.dynamic == "diffusion":
log_file_name += (
f"_diffusion_ddim{int(cfg.use_ddim)}stepnum{cfg.diffusion_steps_sample}"
)
elif cfg.dynamic == "flow":
log_file_name += (
f"_flow_{cfg.ode_kwargs['method']}step{cfg.ode_kwargs['step_size']}"
)
else:
raise ValueError()
log_file_name += f"_{datetime.now().strftime('%m-%d-%H-%M')}"
log_file_name += ".log"
print(f"Will save to log file [{log_file_name}]")
print(f"Eval mode [{cfg.eval_mode}]")
if cfg.eval_mode == "debug":
num_samples_limit = 1000 # None means no limit (eval over all dataset)
run_mm = False
mm_num_samples = 0
mm_num_repeats = 0
mm_num_times = 0
diversity_times = 300
replication_times = 5 # about 3 Hrs
elif cfg.eval_mode == "wo_mm":
num_samples_limit = 1000
run_mm = False
mm_num_samples = 0
mm_num_repeats = 0
mm_num_times = 0
diversity_times = 300
replication_times = 20 # about 12 Hrs
elif cfg.eval_mode == "mm_short":
num_samples_limit = 1000
run_mm = True
mm_num_samples = 100
mm_num_repeats = 30
mm_num_times = 10
diversity_times = 300
replication_times = 5 # about 15 Hrs
else:
raise ValueError()
dist_util.setup_dist()
logger.configure()
logger.log("creating data loader...")
SPLIT = "test"
gt_loader = get_dataset_loader(
name=cfg.dataset,
batch_size=cfg.batch_size,
num_frames=None,
split=SPLIT,
hml_mode="gt",
)
gen_loader = get_dataset_loader(
name=cfg.dataset,
batch_size=cfg.batch_size,
num_frames=None,
split=SPLIT,
hml_mode="eval",
)
num_actions = gen_loader.dataset.num_actions
if cfg.dynamic == "diffusion":
model, dynamic = create_model_and_diffusion(cfg, gen_loader)
elif cfg.dynamic == "flow":
model, dynamic = create_model_and_flow(cfg, gen_loader)
else:
raise ValueError()
logger.log(f"Loading checkpoints from [{cfg.model_path}]...")
state_dict = torch.load(cfg.model_path, map_location="cpu")
load_model_wo_clip(model, state_dict)
if cfg.guidance_param != 1:
# wrapping model with the classifier-free sampler
model = ClassifierFreeSampleModel(model)
model.to(dist_util.dev())
model.eval() # disable random masking
eval_motion_loaders = {
"vald": lambda: get_mdm_loader(
model,
dynamic,
cfg.batch_size,
gen_loader,
mm_num_samples,
mm_num_repeats,
gt_loader.dataset.opt.max_motion_length,
num_samples_limit,
cfg.guidance_param,
ode_kwargs=cfg.ode_kwargs,
cfg=cfg,
)
}
eval_wrapper = EvaluatorMDMWrapper(cfg.dataset, dist_util.dev())
evaluation(
eval_wrapper,
gt_loader,
eval_motion_loaders,
log_file_name,
replication_times,
diversity_times,
mm_num_times,
run_mm=run_mm,
)
def evaluate_matching_score(eval_wrapper, motion_loaders, file):
match_score_dict = OrderedDict({})
R_precision_dict = OrderedDict({})
activation_dict = OrderedDict({})
print("========== Evaluating matching_score ==========")
for motion_loader_name, motion_loader in motion_loaders.items():
all_motion_embeddings = []
score_list = []
all_size = 0
matching_score_sum = 0
top_k_count = 0
# print(motion_loader_name)
with torch.no_grad():
for idx, batch in enumerate(motion_loader):
word_embeddings, pos_one_hots, _, sent_lens, motions, m_lens, _ = batch
text_embeddings, motion_embeddings = eval_wrapper.get_co_embeddings(
word_embs=word_embeddings,
pos_ohot=pos_one_hots,
cap_lens=sent_lens,
motions=motions,
m_lens=m_lens,
)
dist_mat = euclidean_distance_matrix(
text_embeddings.cpu().numpy(), motion_embeddings.cpu().numpy()
)
matching_score_sum += dist_mat.trace()
argsmax = np.argsort(dist_mat, axis=1)
top_k_mat = calculate_top_k(argsmax, top_k=3)
top_k_count += top_k_mat.sum(axis=0)
all_size += text_embeddings.shape[0]
all_motion_embeddings.append(motion_embeddings.cpu().numpy())
all_motion_embeddings = np.concatenate(all_motion_embeddings, axis=0)
matching_score = matching_score_sum / all_size
R_precision = top_k_count / all_size
match_score_dict[motion_loader_name] = matching_score
R_precision_dict[motion_loader_name] = R_precision
activation_dict[motion_loader_name] = all_motion_embeddings
print(f"---> [{motion_loader_name}] matching_score: {matching_score:.4f}")
print(
f"---> [{motion_loader_name}] matching_score: {matching_score:.4f}",
file=file,
flush=True,
)
line = f"---> [{motion_loader_name}] R_precision: "
for i in range(len(R_precision)):
line += "(top %d): %.4f " % (i + 1, R_precision[i])
print(line)
print(line, file=file, flush=True)
return match_score_dict, R_precision_dict, activation_dict
def evaluate_fid(eval_wrapper, groundtruth_loader, activation_dict, file):
eval_dict = OrderedDict({})
gt_motion_embeddings = []
print("========== Evaluating FID ==========")
with torch.no_grad():
for idx, batch in enumerate(groundtruth_loader):
_, _, _, sent_lens, motions, m_lens, _ = batch
motion_embeddings = eval_wrapper.get_motion_embeddings(
motions=motions, m_lens=m_lens
)
gt_motion_embeddings.append(motion_embeddings.cpu().numpy())
gt_motion_embeddings = np.concatenate(gt_motion_embeddings, axis=0)
gt_mu, gt_cov = calculate_activation_statistics(gt_motion_embeddings)
# print(gt_mu)
for model_name, motion_embeddings in activation_dict.items():
mu, cov = calculate_activation_statistics(motion_embeddings)
# print(mu)
fid = calculate_frechet_distance(gt_mu, gt_cov, mu, cov)
print(f"---> [{model_name}] FID: {fid:.4f}")
print(f"---> [{model_name}] FID: {fid:.4f}", file=file, flush=True)
eval_dict[model_name] = fid
return eval_dict
def evaluate_diversity(activation_dict, file, diversity_times):
eval_dict = OrderedDict({})
print("========== Evaluating Diversity ==========")
for model_name, motion_embeddings in activation_dict.items():
diversity = calculate_diversity(motion_embeddings, diversity_times)
eval_dict[model_name] = diversity
print(f"---> [{model_name}] Diversity: {diversity:.4f}")
print(f"---> [{model_name}] Diversity: {diversity:.4f}", file=file, flush=True)
return eval_dict
def evaluate_multimodality(eval_wrapper, mm_motion_loaders, file, mm_num_times):
eval_dict = OrderedDict({})
print("========== Evaluating MultiModality ==========")
for model_name, mm_motion_loader in mm_motion_loaders.items():
mm_motion_embeddings = []
with torch.no_grad():
for idx, batch in enumerate(mm_motion_loader):
# (1, mm_replications, dim_pos)
motions, m_lens = batch
motion_embedings = eval_wrapper.get_motion_embeddings(
motions[0], m_lens[0]
)
mm_motion_embeddings.append(motion_embedings.unsqueeze(0))
if len(mm_motion_embeddings) == 0:
multimodality = 0
else:
mm_motion_embeddings = torch.cat(mm_motion_embeddings, dim=0).cpu().numpy()
multimodality = calculate_multimodality(mm_motion_embeddings, mm_num_times)
print(f"---> [{model_name}] Multimodality: {multimodality:.4f}")
print(
f"---> [{model_name}] Multimodality: {multimodality:.4f}",
file=file,
flush=True,
)
eval_dict[model_name] = multimodality
return eval_dict
def get_metric_statistics(values, replication_times):
mean = np.mean(values, axis=0)
std = np.std(values, axis=0)
conf_interval = 1.96 * std / np.sqrt(replication_times)
return mean, conf_interval
def evaluation(
eval_wrapper,
gt_loader,
eval_motion_loaders,
log_file_name,
replication_times,
diversity_times,
mm_num_times,
run_mm=False,
):
with open(log_file_name, "w") as f:
all_metrics = OrderedDict(
{
"matching_score": OrderedDict({}),
"R_precision": OrderedDict({}),
"FID": OrderedDict({}),
"Diversity": OrderedDict({}),
"MultiModality": OrderedDict({}),
}
)
print("replication_times:", replication_times)
for replication in tqdm(
range(replication_times), desc="replication", total=replication_times
):
motion_loaders = {}
mm_motion_loaders = {}
motion_loaders["ground truth"] = gt_loader
for motion_loader_name, motion_loader_getter in eval_motion_loaders.items():
motion_loader, mm_motion_loader = motion_loader_getter()
motion_loaders[motion_loader_name] = motion_loader
mm_motion_loaders[motion_loader_name] = mm_motion_loader
print(
f"==================== Replication {replication} ===================="
)
print(
f"==================== Replication {replication} ====================",
file=f,
flush=True,
)
print(f"Time: {datetime.now()}")
print(f"Time: {datetime.now()}", file=f, flush=True)
mat_score_dict, R_precision_dict, acti_dict = evaluate_matching_score(
eval_wrapper, motion_loaders, f
)
print(f"Time: {datetime.now()}")
print(f"Time: {datetime.now()}", file=f, flush=True)
fid_score_dict = evaluate_fid(eval_wrapper, gt_loader, acti_dict, f)
print(f"Time: {datetime.now()}")
print(f"Time: {datetime.now()}", file=f, flush=True)
div_score_dict = evaluate_diversity(acti_dict, f, diversity_times)
if run_mm:
print(f"Time: {datetime.now()}")
print(f"Time: {datetime.now()}", file=f, flush=True)
mm_score_dict = evaluate_multimodality(
eval_wrapper, mm_motion_loaders, f, mm_num_times
)
print(f"!!! DONE !!!")
print(f"!!! DONE !!!", file=f, flush=True)
for key, item in mat_score_dict.items():
if key not in all_metrics["matching_score"]:
all_metrics["matching_score"][key] = [item]
else:
all_metrics["matching_score"][key] += [item]
for key, item in R_precision_dict.items():
if key not in all_metrics["R_precision"]:
all_metrics["R_precision"][key] = [item]
else:
all_metrics["R_precision"][key] += [item]
for key, item in fid_score_dict.items():
if key not in all_metrics["FID"]:
all_metrics["FID"][key] = [item]
else:
all_metrics["FID"][key] += [item]
for key, item in div_score_dict.items():
if key not in all_metrics["Diversity"]:
all_metrics["Diversity"][key] = [item]
else:
all_metrics["Diversity"][key] += [item]
if run_mm:
for key, item in mm_score_dict.items():
if key not in all_metrics["MultiModality"]:
all_metrics["MultiModality"][key] = [item]
else:
all_metrics["MultiModality"][key] += [item]
# print(all_metrics['Diversity'])
mean_dict = {}
for metric_name, metric_dict in all_metrics.items():
print("========== %s Summary ==========" % metric_name)
print("========== %s Summary ==========" % metric_name, file=f, flush=True)
for model_name, values in metric_dict.items():
# print(metric_name, model_name)
mean, conf_interval = get_metric_statistics(
np.array(values), replication_times
)
mean_dict[metric_name + "_" + model_name] = mean
# print(mean, mean.dtype)
if isinstance(mean, np.float64) or isinstance(mean, np.float32):
print(
f"---> [{model_name}] Mean: {mean:.4f} CInterval: {conf_interval:.4f}"
)
print(
f"---> [{model_name}] Mean: {mean:.4f} CInterval: {conf_interval:.4f}",
file=f,
flush=True,
)
elif isinstance(mean, np.ndarray):
line = f"---> [{model_name}]"
for i in range(len(mean)):
line += "(top %d) Mean: %.4f CInt: %.4f;" % (
i + 1,
mean[i],
conf_interval[i],
)
print(line)
print(line, file=f, flush=True)
return mean_dict
if __name__ == "__main__":
main()